a2 United States Patent

US009081697B2

(10) Patent No.: US 9,081,697 B2

Sakurai (45) Date of Patent: Jul. 14, 2015
(54) STORAGE CONTROL APPARATUS AND (56) References Cited
STORAGE CONTROL METHOD
U.S. PATENT DOCUMENTS
(71) Applicant: EUJITSU I};MITED, Kawasaki-shi, 5.533.190 A 711996 Binford et al.
anagawa (JP) 5787460 A 7/1998 Yashiro et al.
6,016,553 A 1/2000 Schneider et al.
(72) Inventor: Hiroshi Sakurai, Kawasaki (JP) 6,931,576 B2* 82005 Morrison etal. 714/54
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 TP 6-119126 4/1994
U.S.C. 154(b) by 345 days. P 8-263227 10/1996
Jp 9-190370 7/1997
(21) Appl. No.: 13/850,482 (Continued)
(22) Filed: Mar 26,2013 OTHER PUBLICATIONS
. A PCT Preliminary Report on Patentability mailed May 16, 2013 in
(65) Prior Publication Data corresponding International Application No. PCT/JP2010/068561.
US 2013/0219248 Al Aug. 22,2013 (Continued)
Primary Examiner — Shelly A Chase
Related U.S. Application Data (74) Attorney, Agent, or Firm — Staas & Halsey LLP
(63) Continuation of application No. PCT/JP2010/068561, (57) ABSTRACT
filed on Oct. 21, 2010. . .
A storage control apparatus receives a write request for a
(51) Int.ClL storage apparatus. When the storage control apparatus
GO6F 1100 (2006.01) receives the write request, the storage control apparatus
GO6F 11/10 (2006.01) duplicates into a specific storage area, data stored in a storage
GO6F 11/16 (2006.01) area of the storage apparatus and parity data whose genera-
GO6F 1120 (2006.01) tion source is the data. The storage control apparatus deter-
(52) US.Cl mines whether one of the storage apparatuses is started up for
CPC) GOGF 11/10 (2013.01); GOGF 11/1084 which a writing process is executed in response to the write
"""" ('2'(')'13 01); GO6F 11/1 6;52 (’2013 01); GOGF request. When the storage apparatus is re-started, the storage
]]/209% (2(’)13 01); GOG6F ZZOJ/Sé (2613 o1) control apparatus writes the data duplicated in the specific
(53) Field of Classifica tion.Sea’rch ’ storage area into the storage area of the duplication source of

CPC . GO6F 11/10; GO6F 11/1083; GOG6F 11/1662;

GOG6F 11/1076
USPC ..coocevnee 714/5.11, 6.12, 54,746, 769-770
See application file for complete search history.

the storage apparatus and writes the parity data duplicated in
the specific storage area into the storage area of the duplica-
tion source of the storage apparatus.

10 Claims, 27 Drawing Sheets

HDD FOR WHICH
WRITING PROCESS IS EXECUTED
IN RESPONSE TO WRITE REQUEST
IS RE-STARTED?

" CHANGE WRITING STATE FLAG FROM "1"TO"0"

US 9,081,697 B2

Page 2
(56) References Cited Jp 2005-78430 3/2005
Jp 2010-26812 2/2010
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
7,085,953 B1* 82006 Hsuetal 714/5.11

8,286,029 B2* 10/2012 Andersonetal. 714/6.32

FOREIGN PATENT DOCUMENTS

JP 11-95933
JP 2004-504645

4/1999
2/2004

Japanese Office Action mailed Sep. 17, 2013 in corresponding Japa-
nese Application No. 2012-539521.

International Search Report of PCT/JP2010/068561 mailed Jan. 25,
2011.

* cited by examiner

US 9,081,697 B2

Sheet 1 of 27

Jul. 14, 2015

U.S. Patent

cdioX1a=d | sAIvEvdav SAIVIvVddv SALVIVddY
I5VH01S IOVIOLS I5VIOLS
4K AN aN—_
€s Zs 1S
Lo SNLVHVddV
p TOHINOD FOVHOLS
00} 1 Ol

U.S. Patent Jul. 14, 2015 Sheet 2 of 27 US 9,081,697 B2

FIG.2 10

STORAGE CONTROL | _ 101
APPARATUS

S1 QD S2 S3

STORAGE STORAGE STORAGE
APPARATUS APPARATUS APPARATUS
1
(1) WRITE REQUEST (D1 TO D1#)
S1 L1 200 s3
(2) DUPLI- —————— (2) DUPLI-
" CATION | -] [|l CATION -
\—__/
STORAGE SPECIFIC STORAGE
APPARATUS STORAGE AREA APPARATUS
1

(3) WRITING PROCESS IN RESPONSE TO WRITE
REQUEST (D1 TO D1# AND P TO P#)

SUCCESSFUL FAILED
WRITING g1 WRITING g3

INCONSIS- f———]
I TENCY | Px+P AND P#
STORAGE STORAGE
APPARATUS APPARATUS
1
(4) 1S STORAGE APPARATUS S1 OR S3 IS RE-STARTED?
S1 L1 200 s$3

5)®5

((5)
X D1 lJWRITING| [b [|WRITING

Y

2])-4

e
STORAGE SPECIFIC STORAGE
APPARATUS STORAGE AREA APPARATUS
A A

CONSISTENCY OF DATA IS ASSURED BETWEEN STORAGE
APPARATUSES S1 AND S3

US 9,081,697 B2

Sheet 3 of 27

Jul. 14, 2015

U.S. Patent

T T e
[wd] [va] 1-ua
cedled | e ¥ | e J[€a]
[1d_] [ed | a1
L
||||.|\
caay / _ Noa_._ﬂH} onw _
SOE \
MHOMLAN 93 T109LNOD
0ze NOILVOINNWNOD Y3 TIOYLNOD AHOWII
S0~ aaH JLVIOA-NON
Y HITIOHLINOD 605/ 80¢/
AV1dSId g3 TI041NOD
sng
oLe’/
7087 goo| AHOWIW NIVIA
y AMOWIN HOSSIDONd
10€
90g/
L0E — Ndo SNLYYVddY TOMINOD IOVHOLS
1oL/
s .
00€ € 9l4

US 9,081,697 B2

Sheet 4 of 27

Jul. 14, 2015

U.S. Patent

907
SSIADIV
INIL
dN-149v.1S
IVINHON e
IVINHON -
IVINYON !
HIGNNN
31VIS IBNe
0[%4%
9lL¢
mDDT_ \.“,\ ||||||||||| /\m

907
SS300V
JNIL
dN-14V1S
TYINHON c
TVINEON 2
TVYINHON]
H3gWNN
31v1S I8N
0Zy
GlLe
2a0H T YOI

901
SS3D0V
JNIL
dN-18V1S
IYINEON c
IVINSHON z
TVINHON]
H3dINNN
31V1S N
oL¥
vLE
FDDI \m’\ \\\\\\\\\\ ::g"

US 9,081,697 B2

Sheet 5 of 27

Jul. 14, 2015

U.S. Patent

LINN TOY1INOD
A J) A mom\ ¢ 4 A
Y y y LINN \J v
LINNONI | LINNONI |, 1INN | ONININYF13d LINN -
-1DNHLSNI -NINY3L3a ONILOI13A 3UNTIVA ONILNOIXT [* i &ﬁm%@o
wv_:._m\s 8057 1 1057 aNV SS300NS | e 7 4 Y T
605 908 Y
1INA - 1IN 1INN ONILONYLSNI
Y ONILVadn | ONIAIZO3NH NOILYOI'dNd
205/ 10S~ vos” F 4
A .
Lol GOl

U.S. Patent Jul. 14, 2015 Sheet 6 of 27 US 9,081,697 B2

FIG . 6 WRITE 600
REQUEST ’

DATATO BE
HDD NUMBER LBA NUMBER WRITTEN

1 1 D1#

US 9,081,697 B2

Sheet 7 of 27

Jul. 14, 2015

U.S. Patent

b

b

2

}

b

39NN

S39NNN v 14 (e-2)
agH a3 14 | =8N HEAON J1VIS agH aFTiv4 | HEGHNN | MIERON 31vIS
ONILINM ONILIYM ONILINM ONILINM
H3IGWNN SIFNAN SIGNNN ov1d (L-2)
QaH a3 iv4 o 1 J1V.LS
ONILINM ONILLIYM
- - - 0
NEETI 5V 14
aaH a3iv4 mmmmﬁaz mm_%ﬁ_u\,_::z J1VIS
ONILINM ONILIYM

004

31av1i 31vLsS
ONILIIM

s

Ol4

(z-1)

U.S. Patent Jul. 14, 2015 Sheet 8 of 27

FIG.8

WRITING
BUFFER

WRITING BUFFER B1 D1
WRITING BUFFER B2 P1
WRITING BUFFER B3 D1#

US 9,081,697 B2

US 9,081,697 B2

Sheet 9 of 27

Jul. 14, 2015

U.S. Patent

ocy-¥

oey-—r

ocy-¥

WWHONEY 2
TYINHON !
d38ANN
ALVLS o
>
YINHON g
z
TWINHON !
SIENNN
ALVLS o
(-
TVIWHON 3
TYWHON 2
TVWHON [
SIENNN
A1VIS oo
9ie
£aaH - -

ocyr-»

0cy-¥

ocy-»

TYINEON ¢
(IvWHONaY) Z
IYINEON L
HAGANN
JIVIS qaH
>
TYINEON £
Z
IYINHON I
J3gNNN
JLVLS aaH
TYINHON €
TYWHON A
IYWHON L
H3IFGNNN
31VLS aaH
Glg
2QaH < -

oLyp-¥

OLw-¥

oLy-¥

e
TYNHONGY 4
IVYINHON l
HIdNNN
J1VIS aaH
o
TYINHON €
4
IVIWHON 3
d3IgGNNN
J1vis aaH
i
IVINHON €
TYNHON c
TYIWHON !
HA8INNN
ENAAR aaH
1435
LagH -~ 4

(z-6)

(1-6)

U.S. Patent Jul. 14, 2015 Sheet 10 of 27 US 9,081,697 B2

FIG' 1 O DETECTION 1000
‘ RESULT TABLE '

HDD NUMBER DETECTION TIME

(10-1) HDD NUMBER DETECTION TIME
2 2010/08/23 02:11:55

HDD NUMBER DETECTION TIME
(10-2) 2 2010/08/23 02:11:55
3 2010/08/24 12:09:22

U.S. Patent Jul. 14, 2015 Sheet 11 of 27 US 9,081,697 B2

FIG.11

HDD2

7

‘ o
LBA1

U

HDD2

<Ully>
N7
L)
LBA1 OFF LINE

STORAGE SYSTEM ENTERS MULTI-DEAD STATE AND THEREFORE, ENTERS
SYSTEM DOWN STATE

Y

CONSISTENCY NOT MAINTAINED!

(11-1)

HDD1 HDD2

(11-2)
LBA1

STORAGE SYSTEM RESTORED FROM MULTI-DEAD STATE TO NON-
REDUNDANT CONFIGURATION

U

CONSISTENCY ESTABLISHED!

HDD2

(11-3)

WRITE PARITY
DATA P1

WRITE DATA
D1

WRITING BUFFER

U.S. Patent Jul. 14, 2015 Sheet 12 of 27 US 9,081,697 B2

(12-1)

(12-2)

(12-3)

FIG.12

HDD2

HDD3

N

LBA1

STORAGE SYSTEM ENTERS MULTI-DEAD STATE AND THEREFORE, ENTERS
SYSTEM DOWN STATE

Y

CONSISTENCY NOT MAINTAINED!

HDD1 HDD2

STORAGE SYSTEM RESTORED FROM MULTI-DEAD STATE TO REDUNDANT
CONFIGURATION

U

CONSISTENCY ESTABLISHED!

HDD2

B1

WRITE DATA D1 WRITE PARITY
D1 - DATA P1
P1 B2

WRITING BUFFER

U.S. Patent Jul. 14, 2015 Sheet 13 of 27 US 9,081,697 B2

HDD1

"1, LBA1

(13-1))3 —m

STORAGE SYSTEM ENTERS MULTI-DEAD STATE AND THEREFORE, ENTERS
SYSTEM DOWN STATE

U

CONSISTENCY NOT MAINTAINED!

HDD3

LBA1

HDD1

(13-2)

STORAGE SYSTEM RESTORED FROM MULTI-DEAD STATE TO REDUNDANT
CONFIGURATION

y

CONSISTENCY ESTABLISHED!

HDD2

(13-3)

AFWRITE PARITY

DATA P1#

WRITE DATA
D1#

WRITING BUFFER

U.S. Patent Jul. 14, 2015 Sheet 14 of 27 US 9,081,697 B2

FIG.14

HDD1 HDD2
7
LBA1 = LBA1

(14-1)

HDD1 HDD2 HDD3
<> <Uy>
7 N7
LBA1 LBA1 o3 S LBA1

STORAGE SYSTEM ENTERS MULTI-DEAD STATE AND THEREFORE, ENTERS
SYSTEM DOWN STATE

<3

CONSISTENCY NOT MAINTAINED!

(14-2)
REDUNDANT CONFIGURATION
CONSISTENCY ESTABLISHED!
(14-3)

\

WRITE PARITY
DATA P1#

WRITING BUFFER

U.S. Patent Jul. 14, 2015 Sheet 15 of 27 US 9,081,697 B2

HDD3

LBA1
HDD3
15-1
() LBA1
STORAGE SYSTEM ENTERS MULTI-DEAD STATE AND THEREFORE, ENTERS
SYSTEM DOWN STATE

HDD3
15-2

(15-2) LBA1

STORAGE SYSTEM RESTORED FROM MULTI-DEAD STATE TO NON-
REDUNDANT CONFIGURATION
HDD3

LBA1

(15-3)

WRITE DATA
D1#

WRITING BUFFER

U.S. Patent

Jul. 14, 2015

Sheet 16 of 27

FIG.16 (e

YES

US 9,081,697 B2

M

S1601

HAS WRITE
REQUEST BEEN
RECEIVED?

51602

NUMBER x OF
HDDs AT WHICH FAULTS

OCCUR IS "x=0"?

$1607

WRITING
STATEFLAG IS "1™?

/ S1603 ¢ Tno

CHANGE WRITING
STATE FLAG FROM "0" CHANGE WRITING STATE FLAG I»

TO II1"
Y
L WRITE HDD NUMBER AND LBA r

WRITE HDD NUMBER NUMBER

AND LBA NUMBER 1610

NO

YES

$1608

$1609

N\ s1604 | YES FAULT OCCURS
« AT PARITY DRIVE?
S1611
FAULT
YES OCCURS AT HDDk OF FOR
WHICH WRITE REQUEST IS S1615
RECEIVED? I
CHANGE HDD
$1605 NO S1612 STATE FROM
L ul y L "NORMAL" TO
DUPLICATE DATA Di# DUPLICATE DATA Di INTO WRITING "ABNORMAL"
TO BE WRITTEN INTO BUFFER B1 7
WRITING BUFFER B3 CAUSEFDDTOBE
OFF LINE

DUPLICATE PARITY DATA Pj INTO
WRITING BUFFER B2

Y

DUPLICATE DATA Di# TO BE
WRITTEN INTO WRITING BUFFER B3
N O
=‘

EXECUTE WRITING PROCESS IN RESPONSE

' :

TO RECEIVED WRITE REQUEST

>

SYSTEM DOWN
STATE

81614

S1617

51606

U.S. Patent Jul. 14, 2015 Sheet 17 of 27 US 9,081,697 B2

&) FIG.17

S1701

WRITING
PROCESS IN
RESPONSE TO WRITE
REQUEST SUCCESSFULLY
EXECUTED?

NO

WRITE HDD NUMBER
/51702 OF HDD FOR WHICH
DATA WRITING HAS
FAILED

YES

CHANGE WRITING STATE FLAG
FROM "1" TO "0"

HDD AT
WHICH FAULT OCCURS IS
DETECTED?

CHANGE HDD STATE FROM S1705
"NORMAL" TO "ABNORMAL"

CAUSE HDD TO BE OFF LINE S$1706

NUMBER x OF
HDDs AT WHICH FAULTS
QCCUR IS "x22"?

YES

S1708 vy S1709

CHANGE WRITING STATE FLAG I SYSTEM DOWN STATE I
FROM ||1|| TO llO"

ottt

>y

(END)

U.S. Patent Jul. 14, 2015 Sheet 18 of 27 US 9,081,697 B2

FIG.18

$51801
HDD FOR WHICH
WRITING PROCESS IS EXECUTED
IN RESPONSE TO WRITE REQUEST
IS RE-STARTED?

S1802

WRITING
STATE FLAG IS "1"?

/51803

DATA WRITING PROCESS

S1804

DATA WRITING
PROCESS IS SUCCESSFULLY
EXECUTED?

/51805

I CHANGE WRITING STATE FLAG FROM "1" TO "0" I

FIG.19 [] DATA WRITING PROCESS [}-s1803

WRITE DATA Di DUPLICATED IN WRITING BUFFER $1901
B1 INTO LBAj FOR WHICH REQUEST IS RECEIVED

WRITE PARITY DATA Pj DUPLICATED IN WRITING 51902
BUFFER B2 INTO LBAj OF DUPLICATION SOURCE

CALCULATE PARITY DATA Pj# WHOSE $1903
GENERATION SOURCE IS DATA Di#

WRITE DATA Di# DUPLICATED IN WRITING BUFFER 51904
B3 INTO LBAj FOR WHICH REQUEST IS RECEIVED
L]

WRITE PARITY DATA Pj# INTO LBAj OF S1905
DUPLICATION SOURCE OF PARITY DATA Pj

TO 51804

US 9,081,697 B2

Sheet 19 of 27

Jul. 14, 2015

U.S. Patent

S0€ \
SHHOMLIN ¥ITI0HINOD
oze NOILYOINNIWINOD

€0€
\ ¥ITIOULNOD
AV 1dSIa
708/ goc| AMOWIN NIVIY
L0E Ndo
7
0002

T T T
olef — Jae{ ——] e]
T | IR = [ed]l eq
[or Jlqg 29 Jlzg L0 JL9
[JLg ([Coa g |02 Jhy
m_‘m\\.\l|} N_\m\\\\J _‘_‘m\\\.l.}
€aaH _ ZaaH LAQH _
YITIOYLINOD AHOWIN
aaH IV IOA-NON
605’/ g0c”/
93 T104LNOD
sng
oLe’/
¥ AHOWIW HOSSIDOHd
10§
00g/
SNLYHVddV TOHINOD IOVHOLS
oL/

U.S. Patent Jul. 14, 2015 Sheet 20 of 27

FIG.21 W
TABLE

WRITING STATE
FLAG

STRIP NUMBER

0

FIG.22

US 9,081,697 B2

l RECEIVE WRITE REQUEST FOR STRIP B I\82201

I CHANGE WRITING STATE FLAG FROM "0" TO "1" I"-32202

l WRITE STRIP NUMBER "B" l‘“S2203

l DUPLICATE DATA b1 INTO WRITING BUFFER B3 OF HDD1 TO HDD3 r32204

EXECUTE WRITING PROCESS IN RESPONSE TO RECEIVED WRITE $2205
REQUEST

| CHANGE WRITING STATE FLAG FROM "1" TO "0" I"82206

| START UP OPERATION PROGRAMS FROM STRIPS A AND B I’\82207

TO S2301

U.S. Patent Jul. 14, 2015 Sheet 21 of 27 US 9,081,697 B2

FIG.23

I RECEIVE WRITE REQUEST FOR STRIP C I'\S2301
I CHANGE WRITING STATE FLAG FROM "0" TO "1" I’\S2302
| WRITE STRIP NUMBER "C" I’\82303
l DUPLICATE DATA c1 INTO BUFFER B3 OF HDD1 TO HDD3 I"82304

EXECUTE WRITING PROCESS IN RESPONSE TO RECEIVED WRITE 52305
REQUEST

l CHANGE WRITING STATE FLAG FROM "1" TO "0" I“82306

v
TO 52401

U.S. Patent Jul. 14, 2015 Sheet 22 of 27 US 9,081,697 B2

FIG.24

| RECEIVE WRITE REQUEST FOR STRIP D r 52401
| CHANGE WRITING STATE FLAG FROM "0" TO "1" r S2402
I WRITE STRIP NUMBER "D" r S2403

DUPLICATE DATA d1 INTO WRITING BUFFER B3 OF HDD1 S2404
TO HDD3

EXECUTE WRITING PROCESS IN RESPONSE TO S2405
RECEIVED WRITE REQUEST

HDD FOR WHICH
WRITING PROCESS IS EXECUTED
IN RESPONSE TO WRITE REQUEST
IS RE-STARTED?

WRITE DATA d1 DUPLICATED IN WRITING BUFFER B3 S2407
INTO STRIP D
CALCULATE PARITY DATA p2 (#2) AND WRITE INTO S2408
STRIP P2

-

\ D
CHANGE WRITING STATE FLAG FROM "1" TO "0"

$2409

US 9,081,697 B2

Sheet 23 of 27

Jul. 14, 2015

U.S. Patent

TYWHON € TYWHON € YINHON €
TYWHON Z TYWHON z TYWHON z
IVRHONEY: ! yWHONaY: L | HvwdoNng | !
31VLS | ¥38wnN aaH 3.VIS | ¥38WNN aQH 31viS | ¥3awnN aaH
oqu/\\\lj ey — ol
C]EEN m— g~ ——u] e~ _——
s L2 ia ,
| @ed]|z
ere~{T e~ hhe—
I | 9 |q
€aaH > CAaH <> 1aaH A
TYWHON € TYWHON £ TYWHON €
TYWHON 2 TYWHON z TYWHON z
TYWHON ! TYWHON ! TYIWHON !
3ivis | w3awnN aaH 31VIS | ¥39WNN AaH A1vis | ¥38WNN aaH
oy I 0y — 0Ly .
SIS f— sle~ ——] e _——]
2 s s e
L _* _l}a [&#ed] 2q I S

el oamd |,

€AddH - J

AR

[ta
zagH <

g]

LAaH ¢ J

GZ Ol

U.S. Patent Jul. 14, 2015 Sheet 24 of 27 US 9,081,697 B2

FIG.26

RECEIVE WRITE REQUEST FOR STRIP C I\82601
CHANGE WRITING STATE FLAG FROM "0" TO "1" I‘“82602
WRITE STRIP NUMBER "C" I’\82603

DUPLICATE DATA ¢2 INCLUDED INTO WRITING BUFFER S2604
B3 OF HDD1 TO HDD3

EXECUTE WRITING PROCESS IN RESPONSE TO S2605
RECEIVED WRITE REQUEST
CHANGE WRITING STATE FLAG FROM "1" TO "0" I”82606

TO S2701

U.S. Patent Jul. 14, 2015 Sheet 25 of 27 US 9,081,697 B2

FIG.27
l RECEIVE WRITE REQUEST FOR STRIP D I’\82701

' CHANGE WRITING STATE FLAG FROM "0 I o700
| WRITE STRIP NUMBER "D" }-s2703

DUPLICATE DATA d1 INTO WRITING S2704
BUFFER B1 OF HDD1 TO HDD3

DUPLICATE PARITY DATA p2 (#3) INTO S2705
WRITING BUFFER B2

DUPLICATE DATA d2 INTO WRITING S2706
BUFFER B3 OF HDD1 TO HDD3

EXECUTE WRITING PROCESS IN RESPONSE TO

RECEIVED WRITE REQUEST S2707

WRITING
PROCESS IN
RESPONSE TO WRITE REQUEST
SUCCESSFULLY
EXECUTED?

YES

v /S2709

CHANGE DETECT HDD AT WHICH FAULT OCCURS S2710
WRITING STATE

FLAG FROM "1"

e | CHANGE HDD STATE FROM "NORMAL" TO I
| CAUSE HDD TO BE OFF LINE I*82712
| NUMBER x OF HDDs22 r82713

| SYSTEM DOWN STATE I"S2714

\4

END

US 9,081,697 B2

Sheet 26 of 27

Jul. 14, 2015

U.S. Patent

IVIWHON ¢ IVWHON g IYWRHON €
YIWHONS z (1YWHONSY) z TYWHON z
IYWHONGY L TYWHONEY L (IVINHONEY))
31vLS | ¥38WNN aaH 31vLS | ¥3annN aaH 31viS | ¥39WNN aaH
0t —— olL¥ J—
91€ — PLE
o |4 .
% |la

e (nn)
AT
€aaH - J

bLE~

LQAH 4

IVINHON € TVIWHON g TYNHON €
IVINHON z TVYWHON z TVINYON Z
IYWHONEY b IYWHONEY L (IYINHONEY) I
31V1S | ¥39WNN AaH 31vis | w3awnN aaH 31VLS | Y3EWNN aaH
oqu/\\l} 0cy — oL¥
91€] S1E vie -]
e —]
I | []is)
H g Xed - zd
€1E - =y) AR e——— - bLE~
(COICH | Sy [9 Jlg
eaaH ZaaH <« > LAaH A

8¢ Ol

U.S. Patent Jul. 14, 2015 Sheet 27 of 27 US 9,081,697 B2

FIG.29

S2901

HDD FOR WHICH
WRITING PROCESS IS EXECUTED
IN RESPONSE TO WRITE REQUEST
IS RE-STARTED?

S2902

WRITING STATE FLAG IS "1"?

WRITE DATA d1 DUPLICATED IN WRITING BUFFER $2903
B1INTO STRIP D
WRITE PARITY DATA p2 (#3) DUPLICATED IN $2904
WRITING BUFFER B2 INTO STRIP P2
WRITE DATA d2 DUPLICATED IN WRITING BUFFER $2905
B3 INTO STRIP D

WRITE PARITY DATA p2 (#4) INTO STRIP P2 S2906

S2907
DATA WRITING
PROCESSES SUCCESSFUL?

| CHANGE WRITING STATE FLAG FROM "1" TO "0" I‘SZQOS

4

(END)

US 9,081,697 B2

1
STORAGE CONTROL APPARATUS AND
STORAGE CONTROL METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of Interna-
tional Application PCT/JP2010/068561, filed on Oct. 21,
2010 and designating the U.S., the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to a storage
control apparatus and a storage control method that control
storage apparatuses.

BACKGROUND

When a fault occurs in a disk apparatus of a redundant
storage system such as a redundant array of independent disks
(RAID-3, -5), the system disconnects the disk apparatus
where the fault has occurred. When the storage system dis-
connects the disk apparatus, the storage system records and
updates data using the remaining disk apparatuses excluding
the disconnected disk apparatus.

If another fault subsequently occurs at another disk appa-
ratus, the storage system disconnects the disk apparatus
where the fault occurred. In the following description, this
state will be referred to as a “multi-dead state” where a fault
occurs at a disk apparatus in the storage system and conse-
quently, the storage system loses its redundancy and thereat-
ter, another disk apparatus is further disconnected.

A fault that causes the disconnection of the disk apparatus
can be, for example, thermal off-tracking, contamination,
noise, or poor electrical contact. The fault of a disk apparatus
such as thermal off-tracking, contamination, noise, and poor
electrical contact is often restored by resetting the corre-
sponding hardware or resupplying power after suspending
the power (turning off and on the power).

By executing a resetting of the hardware or by turning off
and on the power for the disk apparatus that has been discon-
nected due to the occurrence of a fault, the disk apparatus can
be restored as a disk apparatus that operates normally. There-
fore, when a storage system in a multi-dead state is restored,
for example, the hardware of the storage system is reset and
thereby, the state is restored to the state maintained before the
storage system entered the multi-dead state.

Documents disclosing techniques to restore a storage sys-
tem having a disk apparatus that has failed include, for
example, Japanese Laid-Open Patent Publication Nos. H11-
95933, 2005-78430, and 2010-26812.

However, according to the conventional techniques, a
problem arises in that, even if the state of a storage system is
restored to the state maintained before the storage system
entered the multi-dead state by resetting the hardware, etc. to
restore the storage system, data corruption may occur due to
inconsistency of data among the disk apparatuses.

SUMMARY

According to an aspect of an embodiment, a storage control
apparatus includes a processor configured to receive a write
request for any one among storage apparatuses in a system
storing for each data group, data items of the data group and
correction codes generated from the data group, the data
items and correction codes being stored in different storage

10

15

20

25

30

35

40

45

50

55

60

65

2

apparatuses; duplicate to a specific storage area and upon
receiving the write request, data stored in a storage area of the
storage apparatus for which the request is received and the
correction code whose generation source is the data; deter-
mine, after duplicating the data and the correction code into
the specific storage area, whether the storage apparatus for
which a writing process is executed in response to the write
request has been re-started; and write, upon determining that
the storage apparatus is re-started, the data duplicated in the
specific storage area into a storage area of the storage appa-
ratus for which the request is received and write the correction
code duplicated in the specific storage area into a storage area
of the storage apparatus from which the correction code is
duplicated.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an explanatory diagram of an example of a storage
system 100 according to a first embodiment;

FIG. 2 is an explanatory diagram of an example of a storage
control approach according to the first embodiment;

FIG. 3 is a block diagram of a hardware configuration of a
storage system 300 according to the first embodiment;

FIG. 4 is an explanatory diagram of a specific example of
management data 410, 420, and 430;

FIG. 5 is a block diagram of a functional configuration of a
storage control apparatus 101 according to the first embodi-
ment;

FIG. 6 is an explanatory diagram of a specific example of a
write request 600;

FIG. 7 is an explanatory diagram of a specific example of a
writing state table 700;

FIG. 8 is an explanatory diagram of a specific example of a
writing buffer B;

FIG. 9 is an explanatory diagram (Part I) of an example of
updating of the management data 410 to 430;

FIG. 10 is an explanatory diagram of a specific example of
a detection result table 1000,

FIG. 11 is an explanatory diagram (Part I) of an example of
transition of the storage content of LBA1 of each of HDD1 to
HDD3;

FIG. 12 is an explanatory diagram (Part IT) of the example
of'the transition of the storage content of the LBA1 of each of
the HDD1 to HDD3;

FIG. 13 is an explanatory diagram (Part III) of the example
of the transition of the storage content of the LBA1 of the
HDD1 to HDD3;

FIG. 14 is an explanatory diagram (Part IV) of the example
of the transition of the storage content of the LBA1 of the
HDD1 to HDD3;

FIG. 15 is an explanatory diagram (Part V) of the example
of'the transition of the storage content of the LBA1 of each of
the HDD1 to HDD3;

FIGS. 16 and 17 are flowcharts of an example of a data
duplication process procedure of the storage control appara-
tus according to the first embodiment;

FIG. 18 is aflowchart of an example of a system restoration
process procedure of the storage control apparatus 101
according to the first embodiment;

FIG. 19 is a flowchart of the example of the specific process
procedure of the data writing process at step S1803;

US 9,081,697 B2

3

FIG. 20 is a block diagram of a hardware configuration of
a storage system 2000 according to a second embodiment;

FIG. 21 is an explanatory diagram of the specific example
of the writing state table 2100;

FIGS. 22, 23, and 24 are flowcharts of the example of the
storage control process procedure of the storage control appa-
ratus 101 in a redundant configuration;

FIG. 25 is an explanatory diagram (Part II) of the example
of the updating of the management data 410 to 430;

FIGS. 26 and 27 are flowcharts of an example of the storage
control process procedure of the storage control apparatus
101 in the non-redundant configuration (whose HDD1 is
abnormal);

FIG. 28 is an explanatory diagram (Part III) of the example
of the updating of the management data 410 to 430; and

FIG. 29 is a flowchart of an example of the system resto-
ration process procedure of the storage control apparatus 101.

DESCRIPTION OF EMBODIMENTS

Preferred embodiments of a storage control apparatus and
a storage control method according to the present invention
will be explained with reference to the accompanying draw-
ings.

FIG.11s an explanatory diagram of an example of a storage
system 100 according to a first embodiment. In FIG. 1, the
storage system 100 includes a storage control apparatus 101
and storage apparatuses S1 to S3. The storage control appa-
ratus 101 is a computer that controls the storage apparatuses
S1to S3. The storage apparatuses S1 to S3 are storage devices
that each store data. The storage apparatuses S1 to S3 each
include a storage medium such as, for example, ahard disk, an
optical disk, a flash memory or a magnetic tape.

The storage system 100 is a redundant system such as a
RAID-3, or a RAID-5 system. The storage system 100 has,
for each data group, data items of the data group and correc-
tion codes each generated from the data items of the data
group stored in the storage apparatus distributing the data
groups each to be stored in the storage apparatus different
from that of each other. The “data group” is a set of the data
items that are mutually related to each other. The “data item”
is data in, for example bits, bytes, or blocks (sectors).

The “correction code” is redundant code having a genera-
tion source that is a data item constituting the data group.
Correction code can be used as correction code that can
restore any one data item of the data group that is the genera-
tion source of the correction code, together with the rest of the
data items of the data group. For example, the correction code
is realized by using parity, a Hamming code, an error correct-
ing code (ECC), a cyclic redundancy check (CRC) code, etc.
In the following description, description will be made taking
an example of parity data formed by taking an exclusive OR
of'the data item constituting the data group that is the genera-
tion source, as an example of the correction code.

In the example of FIG. 1, data items D1 and D2 and parity
data P generated from the data items D1 and D2 are stored in
the storage apparatuses, distributed to be stored in the storage
destination storage apparatus that is different from that of
each other. The parity data P is data formed by taking the
exclusive OR of the data items D1 and D2. In the following
description, for example, the parity data P formed by taking
the exclusive OR ofthe dataitems D1 and D2 and is expressed
as Eq. (1) below where “xor” represents an exclusive OR.

P=D1 xor D2 (€8]

The storage system 100 disconnects a storage apparatus at
which a fault occurs. The expression “to disconnect a storage

10

15

20

25

30

35

40

45

50

55

60

65

4

apparatus at which a fault occurs” means to discontinue
accessing the storage apparatus. As a result, the storage sys-
tem 100 changes from a redundant configuration to a non-
redundant configuration. The “redundant configuration”
refers to a state where the redundancy of the data is assured.
The “non-redundant configuration” refers to a state where the
redundancy of the data is lost from the redundant configura-
tion due to the disconnection of a storage apparatus to which
a fault has occurred.

Even when the storage system 100 changes from the redun-
dant configuration to the non-redundant configuration, the
storage system 100 can restore the data stored in the storage
apparatus that is disconnected due to the occurrence of the
fault (lost data) using the parity data and the data items stored
in the other storage apparatuses. Therefore, the storage sys-
tem 100 can continuously operate even when the storage
system 100 changes from the redundant configuration to the
non-redundant configuration.

For example, when a fault occurs at the storage apparatus
S2, the storage system 100 changes from the redundant con-
figuration to the non-redundant configuration and the data D2
can not be read from the storage apparatus S2. In this case, the
storage system 100 restores the data D2 by taking the exclu-
sive OR of'the data D1 stored in the storage apparatus S1 and
the parity data P stored in the storage apparatus S3 and is
expressed as Eq. (2) below.

D2=D1 xor P=D1 xor D1 xor D2 2)

When the storage system 100 changes from the non-redun-
dant state to a state where a storage apparatus is further
disconnected (the multi-dead state), the storage system 100
changes to a “system down” state because the storage system
100 can not restore the lost data. The “system down” state
refers to a state where the reading process and the writing
process of data can not be executed normally.

An example of the writing process of data will be
described. The case will be described where the data D1
stored in the storage apparatus S1 is updated to data D1# in
the storage system 100 that is in the non-redundant configu-
ration after the storage apparatus S2 is disconnected.

For example, the storage control apparatus 101 reads the
data D1 from the storage apparatus S1. The storage control
apparatus 101 reads the parity data P from the storage appa-
ratus S3. The storage control apparatus 101 calculates the
data D2 by taking the exclusive OR of the data D1 and the
parity data P read from the storage apparatuses. Thereby, the
data D2 is restored to that which is stored in the storage
apparatus S2 disconnected from the storage system 100.

The storage control apparatus 101 calculates new parity
data P# by taking the exclusive OR of the data D1# to be
written and the calculated data D2 (P#=D1#xorD2). The stor-
age control apparatus 101 writes the data D1# into the storage
apparatus S1. The storage control apparatus 101 writes the
parity data P# into the storage apparatus S3.

In this manner, when the storage system 100 updates the
data D1 to the data D1#, the storage system 100 restores the
lost data (the data D2 in the example), assuring the consis-
tency of the data between the storage apparatuses, and simul-
taneously executes the updating of the parity data.

The writing of data into the storage apparatus may fail due
to a fault such as thermal off-tracking, contamination, noise,
or poor electrical contact. For example, the following (a) to
(c) are examples of the failed writing occurring when the data
D1 is updated to the data D1#.

(a) A case where the writing of the data D1# into the storage
apparatus S1 fails and a portion of the data D1# can not be
written into the storage apparatus S1.

US 9,081,697 B2

5

In this case, the data stored in the storage apparatus S1 is
data Dx that is different from both the data items D1 and D1#
(Dx=D1, D1#). When the writing of the data D1# into the
storage apparatus S1 has failed, the storage apparatus S1 is
disconnected from the storage system 100. As a result, the
storage system 100 changes from the non-redundant configu-
ration to the multi-dead state and changes to the system down
state. Therefore, the data stored in the storage apparatus S3
still remains to be the parity data P (P=D1xorD2).

(b) A case where the data D1# is successfully written into
the storage apparatus S1 and thereafter, the writing of the
parity data P# into the storage apparatus S3 fails, and a portion
of the parity data P# can not be written into the storage
apparatus S3.

In this case, the data stored in the storage apparatus S1 is
the data D1#. On the other hand the data stored in the storage
apparatus S3 is data Px that is different from both the parity
data P and the parity data P# (Px=P, P#). When the writing of
the parity data P# into the storage apparatus S3 has failed, the
storage apparatus S3 is disconnected from the storage system
100. As a result, the storage system 100 changes from the
non-redundant configuration to the multi-dead state and
changes to the system down state.

(c) A case where the data D1# is successfully written into
the storage apparatus S1 and thereafter, the writing of the
parity data P# into the storage apparatus S3 fails, and none of
the parity data P# can not be written into the storage apparatus
S3.

In this case, the data stored in the storage apparatus S1 is
the data D1#. On the other hand the data stored in the storage
apparatus S3 is the parity data P. When the writing of the
parity data P# into the storage apparatus S3 has failed, the
storage apparatus S3 is disconnected from the storage system
100. As a result, the storage system 100 changes from the
non-redundant configuration to the multi-dead state and
changes to the system down state.

Asabove, in any case of (a) to (c) above, the storage system
100 changes from the non-redundant configuration to the
multi-dead state due to a writing failure and changes to the
system down state. A fault of the storage apparatus such as
thermal off-tracking, contamination, noise, or poor electrical
contact can often be restored by resetting the hardware of the
storage apparatus or, by turning off and on of the power.

Therefore, the non-redundant configuration of the storage
system 100 maintained immediately before the storage sys-
tem 100 changes to the system down state, can be restored by
resetting the hardware of the storage apparatus (the storage
apparatus S1 or S3) disconnected due to the failure in the
writing or, by turning oft and on of the power of the discon-
nected storage apparatus. However, in any case of (a) to (c)
above, even if the non-redundant configuration of the storage
system 100 maintained immediately before the storage sys-
tem 100 changes to the system down state can be restored, the
consistency of the data is not established between the storage
apparatuses S1 and S3.

In (a) above, the data currently stored in the storage appa-
ratus S1 is “Dx=D1” and the parity data stored in the storage
apparatus S3 is “P=D1xorD2” based on the data D1 stored in
the storage apparatus S1. Therefore, the data D2 can not be
restored even by taking the exclusive OR of the data Dx and
the parity data P as expressed in Eq. (3) below.

D2=Dx xor P=Dx xor D1 xor D2 3)

In (b) above, the data currently stored in the storage appa-
ratus S1 is “D1#” and the parity data stored in the storage
apparatus S3 is “Px=P#=D1#xorD2”. Therefore, the data D2

10

15

55

6

can not be restored even by taking the exclusive OR of the
data D1# and the parity data Px as expressed in Eq. (4) below.

D2=D1# xor Px 4

In (c) above, the data currently stored in the storage appa-
ratus S1 is “D1#” and the parity data stored in the storage
apparatus S3 is “P” based on the data D1 stored in the storage
apparatus S1. Therefore, the data D2 can not be restored even
by taking the exclusive OR of the data D1# and the parity data
P as expressed in Eq. (5) below.

D2=D1# xor P=D1# xor D1 xor D1 xor D2 %)

Based on the above, even when the non-redundant configu-
ration of the storage system 100, i.e., the state where the
storage apparatus S2 is disconnected is restored, which is the
state maintained immediately before the storage system 100
changes to the system down state, the data D2 can not be
correctly restored when the data D2 needs to be read thereat-
ter.

In the first embodiment, when the data is updated associ-
ated with updating of the parity data, the data and the parity
data maintained before the updating are saved to a specific
storage area. In the first embodiment, when the storage appa-
ratus is re-started after the failure in the writing, inconsistency
of'the data between the storage apparatuses due to the failure
in the writing can be prevented by returning the saved data
and the saved parity data to the original storage areas. An
example of a storage control approach according to the first
embodiment will be described with reference to FIG. 2.

FIG. 2 is an explanatory diagram of an example of the
storage control approach according to the first embodiment.
In the example, description will be made taking an example of
a case where the data D1 stored in the storage apparatus S1 is
updated to the data D1# in the storage system 100 depicted in
FIG. 1 in the non-redundant configuration in which storage
apparatus S2 is disconnected.

(1) The storage control apparatus 101 receives a write
request. The write request includes the data D1# to be written
into the storage apparatus S1 and an address of the storage
area of the storage apparatus S1 ofthe request destination. For
example, the storage control apparatus 101 may receive the
write request from an external computer or may receive the
write request by an operational input by a user.

(2) When the storage control apparatus 101 receives the
write request, the storage control apparatus 101 duplicates the
data D1 stored in the storage area of the storage apparatus S1
that corresponds to the write request and the parity data P
whose generation source is the data D1, into a specific storage
area 200. For example, the storage control apparatus 101
reads the data D1 from the storage apparatus S1; writes the
read data D1 into the specific storage area 200; reads the
parity data P from the storage apparatus S3; and writes the
read parity data P into the specific storage area 200.

The specific storage area 200 is a non-volatile storage area
different from the storage areas that are the storage destina-
tions of the data items of the data groups and the parity data
generated from each of the data groups stored in the storage
system 100. For example, the specific storage area 200 may
be disposed in the storage control apparatus 101 or in each of
the storage apparatuses S1 to S3.

(3) The storage control apparatus 101 executes a writing
process in response to the received write request. For
example, the storage control apparatus 101 writes the data
D1# into the storage area of the storage apparatus S1; and
writes the new parity data P# (P#=D1#xorD2) into the storage
area that is the storage destination of the parity data P in the
storage apparatus S3. For example, the storage control appa-

US 9,081,697 B2

7

ratus 101 restores the data D2 of the disconnected storage
apparatus S2, from the data D1 in the storage apparatus S1
and the parity data P in the storage apparatus S3; calculates
the new parity data P# from the data D1# to be written and the
restored data D2; and writes the calculated new parity data P#
into the storage area that is the storage destination of the
parity data P in the storage apparatus S3.

When the writing into the storage apparatus S1 or S3 has
failed, the storage apparatus S1 or S3 into which the wiring
has failed is disconnected from the storage system 100 and the
storage system 100 changes to the multi-dead state and
changes to the system down state. In the example, a case is
assumed where the writing of the parity data P# into the
storage apparatus S3 has failed and a portion of the parity data
P# can not be written into the storage apparatus S3.

In this case, the disconnected storage apparatus S3 is re-
started to restore the non-redundant configuration of the stor-
age system 100 maintained immediately before the storage
system 100 changes to the system down state. In this case, a
case is assumed where the storage apparatus S3 is re-started
and as a result, is restored as a normally operating storage
apparatus.

(4) The storage control apparatus 101 determines whether
the storage apparatus disconnected in (3) is re-started. For
example, the storage control apparatus 101 receives a
completion notification for the re-starting up from the storage
apparatus S3 and thereby, determines that the storage appa-
ratus S3 is re-started.

(5) When the storage apparatus S1 or S3 is re-started, the
storage control apparatus 101 writes the data D1 duplicated in
the specific storage area 200 into the duplication source stor-
age area in the storage apparatus S1 and writes the parity data
P duplicated in the specific storage area 200 into the duplica-
tion source storage area in the storage apparatus S3.

In this manner, according to the storage control approach
according to the first embodiment, when the data is updated
associated with the updating of the parity data, the data and
the parity data maintained before the updating are saved to the
specific storage area 200. When the storage apparatus is re-
started due to the failure in the writing, inconsistency of the
data between the storage apparatuses due to the failure in the
writing can be prevented by returning the data and the parity
data saved to the specific storage area 200 to their original
storage area storage areas.

In the first embodiment, assuming that recovery from a
fault such as thermal off-tracking is by re-starting up the
storage apparatus, the data and the parity data maintained
before the updating are temporarily saved to the specific
storage area 200 for each write request. Thereby, even when
the writing into the storage apparatus has failed due to a fault
such as thermal off-tracking, the consistency of the data
between the storage apparatuses can be established by return-
ing the saved data and the saved parity data to their original
storage area storage areas after the re-starting up of the stor-
age apparatus.

For example, when the writing of the parity data P# into the
storage apparatus S3 has failed in (3) above, inconsistency of
the data occurs between the storage apparatuses S1 and S3,
and the data D2 in the storage apparatus S2 can not be
restored. Therefore, returning the data D1 and the parity data
P saved to the specific storage area 200 to their original
storage area storage areas in (5) above enables prevention of
the inconsistency of the data between the storage apparatuses
S1 and S3 due to the failure in the writing and also enables the
restoration ofthe data D2 using the data D1 and the parity data
P that are returned.

10

15

20

25

30

35

40

45

50

55

60

65

8

A case will be described where the storage control appa-
ratus 101 according to the first embodiment is applied to a
RAID-3 storage system 300. The “RAID 3” is a scheme
according to which a data group is distributed to and recorded
in plural hard disk drives (HDDs) and the parity data gener-
ated from the data group is recorded in a dedicated HDD
(what-is-called parity drive).

In an example of FIG. 3, description will be made taking an
example of the case where the number of HDDs in the storage
system 300 is three, that is, HDD1 to HDD3. However, the
number of HDDs included in the storage system 300 is not
limited to this. For the RAID-3 storage system 300, an arbi-
trary number can be employed as the number of HDDs when
three or more HDDs including one parity drive are included
therein.

FIG. 3 is ablock diagram of a hardware configuration of the
storage system 300 according to the first embodiment. In FIG.
3, the storage system 300 includes a central processing unit
(CPU) 301, a main memory 302, a display controller 303, a
display 304, a communication controller 305, the storage
control apparatus 101, and the HDD1 to HDD3.

The CPU 301 generally controls the storage system 300.
The main memory 302 includes a random access memory
(RAM). For example, the CPU 301 expands an operating
system (OS) of the storage system 300 on the main memory
302 and starts up the OS.

The display controller 303 controls the display on the dis-
play 304 under the control of the CPU 301. The display 304
displays data such as a document, an image, or a function
information in addition to a cursor, an icon, or a tool box. For
example, a CRT, a TFT liquid crystal display, a plasma dis-
play, etc. can be employed as the display 304.

The communication controller 305 is connected to a net-
work 320 such as a local area network (LAN), a wide area
network (WAN), or the Internet through a communication
line and is connected to an external computer through the
network 320. The communication controller 305 supervises
the network 320 and an internal interface, and controls the
input and output of data with respect to the external computer.
The storage system 300 may include an input device such as
akeyboard or a mouse, and an output device such as a scanner
or a printer.

The storage control apparatus 101 includes a processor
306, a memory 307, a non-volatile memory 308, an HDD
controller 309, and a bus controller 310. The processor 306
executes various programs such as the storage control pro-
gram stored in the memory 307.

The processor 306 controls access to the HDD1 to HDD3
through the HDD controller 309, and controls the connections
to the HDD1 to HDD3 through the HDD controller 309. Inthe
following description, the expression “connection of the stor-
age control apparatus 101 and the HDD1 to HDD3 to each
other” will be referred to as “to be on line” and the expression
“disconnection the storage control apparatus 101 and the
HDD1 to HDD3 from each other” will be referred to as “to be
off line”.

The non-volatile memory 308 is a storage medium that has
a property that its storage content is not erased even when the
supply of the power from the power source is suspended, and
is, for example, a non-volatile RAM (NVRAM), a flash
memory, etc. The HDD controller 309 accesses the HDD1 to
HDD3 under the control of the processor 306. The bus con-
troller 310 controls transmission and reception of data
between the storage control apparatus 101 and the CPU 301.

The HDD1 to HDD3 are each a storage device whose
magnetic head reads and writes data by causing a disk applied
with a magnetic material (hard disk) to rotate at a high speed.

US 9,081,697 B2

9

The HDD1 to HDD3 correspond to, for example, the storage
apparatuses S1 to S3. The storage areas of the HDD1 to
HDD3 are divided into data areas 311, 312, and 313 and
system areas 314, 315, and 316.

The capacity of each of the data areas 311 to 313 and the
system areas 314 to 316 is variable within a range of the data
capacity of each of the HDD1 to HDD3. The processor 306
can access each of the system areas 314 to 316 of the HDD1
to HDD3 through the HDD controller 309 irrespective of
being “off line” or “on line”.

In the storage system 300, the HDD1 and HDD2 are HDDs
that collectively store the data items of the data group, and the
HDD3 is an HDD that stores the parity data that is the exclu-
sive OR of each data item of the data group (the parity drive).
The data areas 311 and 312 of the HDD1 and HDD?2 collec-
tively store the data items D1 to Dn. The data area 313 of the
HDD3 stores parity data P1 to Pm. For example, the data
items D1 and D2 are collectively stored among the data areas
311 and 312 of the HDD1 and HDD2. The parity data P1 that
is the exclusive OR of the data items D1 and D2 is stored in the
data area 313 of the HDD3.

The term “data” is data that is one of data items formed by
dividing each of the OS, application programs, user informa-
tion, etc. in the storage system 300. The data size of the data
is, for example, in bits or bytes. Data items of each data group
and the parity data generated from this data group are man-
aged by, for example, assigning the same logical block
addressing (LBA) number thereto.

The “LLBA” is a scheme of assigning serial numbers to all
the sectors in a hard disk and designating a sector using the
serial number thereof. An access to (reading from or writing
into) each of the HDD1 to HDD3 is made for each LBA. For
example, it is assumed that a LBA1 is assigned to the data
items D1 and D2 and the parity data P1.

In this case, the storage area of the HDD1 storing the data
D1 can be identified and accessed by designating the LBA1 of
the HDD1; the storage area of the HDD2 storing the data D2
can beidentified and accessed by designating the LBA1 ofthe
HDD2; and the storage area of the HDD3 storing the parity
data P1 can be identified and accessed by designating the
LBA1 of the HDD3.

The system areas 314 to 316 of the HDD1 to HDD3 store,
for example, the management data of the storage system 300.
The management data includes, for example, information that
indicates whether a fault has occurred at any one of the HDD1
to HDD3. The management data are updated by the processor
306 through the HDD controller 309. A specific example of
the management data will be described.

FIG. 4 is an explanatory diagram of a specific example of
management data 410, 420, and 430. In FIG. 4: the manage-
ment data 410 is the management data stored in the system
area 314 of the HDD1; the management data 420 is the
management data stored in the system area 315 of the HDD2;
and the management data 430 is the management data stored
in the system area 316 of the HDD3.

The management data 410 to 430 each store an HDD
number to identify the HDD and the state of the HDD corre-
lating these items with each other. The state of the HDD is
“normal” in the initial state and is updated from “normal” to
“abnormal” when any fault occurs at the HDD. The state of
the HDD is updated from “abnormal” to “normal” when the
HDD is restored from the fault state.

The management data 410 and 420 respectively store the
starting-up times and access logs of the HDD1 and HDD2.
The access logs of the management data 410 and 420 are
information that respectively include access times at which
the HDD controller 309 accesses the HDD1 and HDD?2 last.

10

15

20

25

30

35

40

45

50

55

60

65

10

The management data 430 stores the starting-up times and
access logs of the HDD3. The access logs of the management
data 430 are information that respectively include access
times at which the HDD controller 309 accesses the HDD3
last. An HDD at while a fault has occurred can be identified by
the management data 410, 420, and 430. Further, the start up
times and the access times of the HDD1 to HDD3 can be
identified by the management data 410, 420, and 430.

FIG. 5 is a block diagram of a functional configuration of
the storage control apparatus 101 according to the first
embodiment. In FIG. 5, the storage control apparatus 101
includes a receiving unit 501, an updating unit 502, a control
unit 503, a duplication instructing unit 504, an executing unit
505, a success and failure determining unit 506, a detecting
unit 507, a determining unit 508, a writing instructing unit
509, and an object determining unit 510. Functions of the
functional units (the receiving unit 501 to the object deter-
mining unit 510) are implemented, for example, by causing
the processor 306 to execute programs stored in the memory
307 depicted in FIG. 3, or by using the HDD controller 309
and the bus controller 310. The result of processing by each of
the functional units (the receiving unit 501 to the object
determining unit 510) is stored to the memory 307 unless
otherwise specified.

The receiving unit 501 has a function of receiving a write
request for the LBAj of the HDDk (for example, k=1, 2, and
3,andj=1, 2, ..., m). The write request includes, for example,
an HDD number “k” that identifies an HDDk of the request
destination, an LBA number “j” that identifies the LBAj of the
request destination, and data to be written (hereinafter,
referred to as “data to be written”). For example, the receiving
unit 501 receives a write request from the CPU 301 through
the bus controller 310. A specific example of the write request
will be described later with reference to FIG. 6.

The updating unit 502 has a function of, when the receiving
unit 502 receives a write request, updating writing state infor-
mation used to identify whether a writing process is normally
completed in response to the write request. The expression “a
writing process is normally completed” means that the writ-
ing of data occurring associated with the write request is
normally completed. A specific example of a writing state
table storing the writing state information will be described
later with reference to FIG. 7.

FIG. 6 is an explanatory diagram of a specific example of a
write request 600. In FIG. 6, the write request 600 includes an
HDD number “1” that identifies the HDDk of the request
destination, an LBA number “1” that identifies the LBAj of
the request destination, and data to be written “D1#”. The
write request 600 of FIG. 6 is to update the data D1 of the
LBA1 of the HDD1 to the data D1# to be written.

FIG. 7 is an explanatory diagram of a specific example of
the writing state table 700. In FIG. 7, the writing state table
700 includes fields for a writing state flag, the HDD number,
the LBA number, and a writing failed HDD number. By
setting information in each of the fields, the writing state
information is stored in the writing state table 700 as a record.

The writing state flag is a flag that indicates whether a
writing process is normally completed in response to a write
request. The writing state flag represents “0” in the initial state
and is changed from “0” to “1” when the write request is
received, and is changed from “1” to “0” when the writing
process is normally completed in response to the write
request. When the writing state flag represents “1”, this indi-
cates that a writing process is currently executed in response
to a write request.

The HDD number is an identifier of the HDDk of the
request destination. The LBA number is an identifier of the

US 9,081,697 B2

11

LBAj of the request destination. The writing failed HDD
number is an identifier of the HDD for which the writing of
the data occurring associated with the write request has failed
as the result of executing the writing process inresponse to the
write request.

In FIG. 7, (7-1) is an example of updating of the writing
state information executed when the write request 600
depicted in FIG. 6 is received. When the write request 600 is
received, the updating unit 502 changes the writing state flag
of'the writing state table 700 from “0” to ““1”’; writes the HDD
number “1” included in the write request 600 into the HDD
number field of the writing state table 700; and also writes the
LBA number “1” included in the write request 600 into the
LBA number field of the writing state table 700.

According to the writing state table 700, the HDD number
and the LBA number of the request destination of the received
write request can be identified and it can be determined
whether the writing process is successfully executed in
response to the write request. The writing state table 700 is
realized, for example, by the non-volatile memory 308
depicted in FIG. 3.

Returning to the description with reference to FIG. 5, the
control unit 503 has a function of controlling access to the
HDD1 to HDD3. For example, the control unit 503 controls
access to the HDD1 to HDD3 according to instructions by the
duplication instructing unit 504, the executing unit 505, and
the writing instructing unit 509 described later. The control
unit 503 is realized, for example, by the HDD controller 309
depicted in FIG. 3. The following description will be made
taking an example of the HDD controller 309 as an example
of the control unit 503.

The duplication instructing unit 504 has a function of,
when the write request is received, instructing the HDD con-
troller 309 to duplicate data Di stored in the LBAj of the
HDDk of the request destination into a writing buffer B (i=1,
2, ..., n) and also has another function of, when the write
request is received, instructing the HDD controller 309 to
duplicate parity data Pj whose generation source is the data Di
into the writing buffer B.

The writing buffer B corresponds to “the specific storage
area 200” depicted in FIG. 2 and is, for example, a non-
volatile storage area that is different from the data areas 311,
312, and 313 of the HDD1 to HDD3, and is disposed, for
example, in each of the system areas 314 to 316 of the HDD1
to HDD3 and the non-volatile memory 308 of the storage
control apparatus 101.

The following description will be made taking an example
of the case where the writing buffer B is disposed in each of
the system areas 314 to 316 of the HDD1 to HDD3. A specific
example of the writing buffer B will be described.

FIG. 8 is an explanatory diagram of a specific example of
the writing buffer B. In FIG. 8, the writing buffer B includes
writing buffers B1, B2, and B3. The writing buffer B1 is a
storage area to be the duplication destination of the data Di
stored in the LBAj of the HDDk of the request destination of
the received write request.

The writing buffer B2 is a storage area to be the duplication
destination of the parity data Pj whose generation source is
the data Di stored in the LBAj of the HDDk of the request
destination of the received write request. The writing buffer
B3 is a storage area to be the duplication destination of the
data to be written included in the write request (hereinafter,
referred to as “data Di# to be written”). The writing buffer B3
will be described later in detail.

For example, when the write request 600 is received, the
duplication instructing unit 504 instructs the HDD controller
309 to duplicate the data D1 stored in the LBA1 of'the HDD1

20

25

30

40

45

50

55

12

into the writing buffer B1. As aresult, the HDD controller 309
reads the data D1 stored in the LBA1 of the HDD1 and writes
the data D1 into the writing buffer B1 of each of the HDD1 to
HDD3. Thereby, the data D1 stored in the LBA1 ofthe HDD1
is duplicated into the writing buffer B1 of each of the HDD1
to HDD3.

When the write request 600 is received, the duplication
instructing unit 504 instructs the HDD controller 309 to
duplicate the parity data P1 whose generation source is the
data D1 stored in the LBA1 of the HDD1 into the writing
buffer B2. As a result, the HDD controller 309 reads the parity
data P1 stored in the LBA1 of the HDD3 and write the parity
data P1 into the writing buffer B2 of each of the HDD1 to
HDD3. Thereby, the parity data P1 is duplicated into the
writing buffer B2 of each of the HDD1 to HDD3.

When multiple parity data are present whose generation
sources are each the data Di, the duplication instructing unit
504 instructs the HDD controller 309 to duplicate the parity
data whose generation sources are each the data Di into the
writing buffer B. For example, for a RAID-6 storage system,
two kinds of parity data are present and therefore, the dupli-
cation instructing unit 504 instructs the HDD controller 309
to duplicate the two kinds of parity data whose generation
sources are each the data Di into the writing buffer B.

For simplicity of the description, unless otherwise indi-
cated, the expression “to instruct the HDD controller 309 to
read or write data and the data is read or written” will be
expressed as “the data is read or written through the HDD
controller 309

Returning to the description with reference to FIG. 5, the
executing unit 505 has a function of executing the writing
process in response to the write request after the data Di and
the parity data Pj are duplicated into the writing bufter B.
Specific examples (A) to (C) of the writing process in
response to the write request executed by the executing unit
505 will be described. However, the description will be made
taking examples of the cases where the writing processes are
each successfully executed in response to the write request.

(A) Writing Process Executed in Redundant Configuration

A writing process will first be described that is executed in
the redundant configuration in response to the write request
600 (a process that needs writing of data D1# to be written,
into the storage apparatus S1). For example, the executing
unit 505 first reads the data D2 (that does not need to be
written) stored in the LBA1 of the HDD2 through the HDD
controller 309 and calculates the new parity data P1# by
taking the exclusive OR of the data D1# included in the write
request 600 and the read data D2 (P1#=D1#xorD2).

The executing unit 505 writes the data D1# to be written,
into the LBA1 of the HDD1 through the HDD controller 309
and also writes the calculated parity data P1# into the LBA1
of'the HDD3 through the HDD controller 309. As a result, the
data D1 in the LBA1 of the HDD1 is updated to the data D1#
to be written and the parity data P1 in the LBA1 of the HDD3
is updated to the new parity data P1#.

(B) Writing Process Executed in Non-Redundant Configu-
ration (Part 1)

A writing process will be described that is executed in
response to the write request 600 in the non-redundant con-
figuration whose HDD2 is off line (a process of updating the
data D1 to the data D1# to be written). For example, when the
executing unit 505 receives the write request, the executing
unit 505 reads the data D1 stored in the LBA1 of the HDD1
through the HDD controller 309 and the parity data P1 stored
in the LBA1 of the HDD3 through the HDD controller 309.

The executing unit 505 calculates the data D2 stored in the
LBA1 of the HDD2 by taking the exclusive OR of the read

US 9,081,697 B2

13
data D1 and the read parity data P1. Thereby, the data D2 can
be restored that is stored in the LBA1 of the HDD2 that is off
line. Thereafter, the executing unit 505 calculates the new
parity data P1# by taking the exclusive OR of the data D1# to
be written included in the write request 600 and the calculated
data D2.

The executing unit 505 writes the data D1# to be written,
into the LBA1 of the HDD1 through the HDD controller 309
and also writes the calculated parity data P1# into the LBA1
of'the HDD3 through the HDD controller 309. As a result, the
data D1 in the LBA1 of the HDD1 is updated to the data D1#
to be written and the parity data P1 in the LBA1 of the HDD3
is updated to the new parity data P1#.

(C) Writing Process Executed in Non-Redundant Configu-
ration (Part II)

A writing process will be described that is executed in the
non-redundant configuration whose HDD2 is off line and that
is executed in response to the write request for updating the
data D2 in the LBA1 of the HDD2 to data D2# to be written.
In this case, because the HDD2 is off line, updating of the
parity data P1 stored in the LBA1 of the HDD3 is executed
according to the following procedure.

For example, the executing unit 505 first reads the data D1
stored in the LBA1 of'the HDD1 through the HDD controller
309 and thereafter, calculates the new parity data P1# by
taking the exclusive OR of the read data D1 and the data D2#
to be written included in the write request.

The executing unit 505 writes the calculated parity data
P1# into the LBA1 of the HDD3 through the HDD controller
309. As a result, the parity data P1 in the LBA1 of the HDD3
is updated to the new parity data P1# on which the content of
the updating of the data D2 (D2 to D2#) is reflected.

The receiving unit 501 has a function of receiving a read
request for the LBAj of the HDDk. The read request includes,
for example, the HDD number “k” that identifies the HDDk
of the request destination and the LBA number “j” that iden-
tifies the LBAj of the request destination. For example, the
receiving unit 501 receives the read request from the CPU 301
through the bus controller 310.

The executing unit 505 has a function of executing the
reading process in response to the received read request. For
example, the executing unit 505 reads the data Di stored in the
LBAj of the HDDk of the request destination through the
HDD controller 309. When the HDDk of the request destina-
tion is off line, the executing unit 505 restores the data Di
using the parity data Pj whose generation source is the data Di
stored in the LBAj ofthe HDDk of the request destination and
the data stored in another HDD. A reading process will be
described of reading the data D2 of the LBA1 of the HDD2
taking an example of the case where the HDD2 is off line.

For example, the executing unit 505 receives the read
request; reads the data D1 stored in the LBA1 of the HDD1
through the HDD controller 309; also reads the parity data P1
stored in the LBA1 of the HDD3 through the HDD controller
309; and calculates the data D2 stored in the LBA1 of the
HDD2 by taking the exclusive OR of the read data D1 and the
read parity data P1. Thereby, the data D2 can be restored that
is stored in the LBA1 of the HDD2 that is off line, and can be
used as the read data.

The success and failure determining unit 506 has a function
of determining whether a writing process is successfully
executed in response to a write request, based on the process-
ing result of the writing process executed in response to the
write request. For example, the success and failure determin-
ing unit 506 determines that the writing process is success-

10

15

20

25

30

35

40

45

50

55

60

65

14

fully executed in response to the write request when writing
of data occurring associated with the write request is wholly
completed normally.

Inthe examples of (A) and (B), when the writing ofthe data
D1# to be written and the parity data P1# is normally com-
pleted, the success and failure determining unit 506 deter-
mines that the writing process is successfully executed. On
the other hand when the writing of at least either of the data
D1# to be written and the parity data P1# is not normally
completed, the success and failure determining unit 506
determines that the writing process has failed.

In the example of (C), when the writing of the parity data
P1# is normally completed, the success and failure determin-
ing unit 506 determines that the writing process is success-
fully executed. On the other hand when the writing of the
parity data P1# is not normally completed, the success and
failure determining unit 506 determines that the writing pro-
cess has failed.

The determination as to whether the writing of the data is
normally completed is made based on, for example, the deter-
mination as to whether a CRC code of the data Di# to be
written, to be written into the HDDk and a CRC code of the
data actually written thereinto coincide with each other.
When the CRC codes coincide with each other, the success
and failure determining unit 506 determines that the writing
of the data Di# to be written is normally completed. On the
other hand when the CRC codes do not coincide with each
other, the success and failure determining unit 506 determines
that the writing of the data Di# to be written is not normally
completed.

When the writing process is executed in response to the
write request, the updating unit 502 updates the writing state
information that is for identifying whether the writing process
is normally completed in response to the write request. For
example, the updating unit 502 updates the writing state table
700 depicted in FIG. 7 based on the result of the determina-
tion made by the success and failure determining unit 506.

For example, when the success and failure determining
unit 506 determines that the writing process is successfully
executed in response to the write request, the updating unit
502 changes the writing state flag of the writing state table
700 from “1”to “0”. On the other hand when the success and
failure determining unit 506 determines that the writing pro-
cess executed in response to the write request has failed, the
updating unit 502 writes the HDD number of the HDDk into
which the writing of the data is not normally completed, into
the writing failed HDD number field of the writing state table
700.

In FIG. 7, (7-2) is an example of updating of the writing
state information executed when the writing process is suc-
cessfully executed in response to the write request 600. For
example, when the writing process is normally completed in
response to the write request 600, the updating unit 502
updates the writing state flag of the writing state table 700
from “1” to “0”.

In FIG. 7, (7-3) is an example of updating of the writing
state information executed when the writing process executed
in response to the write request 600 has failed. The descrip-
tion will be made taking an example of the case where the
writing of the parity data P1# into the LBA1 of the HDD3 is
not normally completed. In this case, the updating unit 502
writes the HDD number “3” of the HDD3 into the writing
failed HDD number field of the writing state table 700.

When the writing process is successfully executed in
response to the write request, the updating unit 502 may
delete the data Di and the parity data Pj stored in the writing
buffer B. The storage control apparatus 101 may be config-

US 9,081,697 B2

15

ured to overwrite new data Di and new parity data Pj onto the
writing buffer B when the storage control apparatus 101
receives a new write request. In this case, the storage control
apparatus 101 does not need to delete the data Di and the
parity data Pj stored in the writing buffer B each time the
writing process is successfully executed in response to the
write request.

Returning to the description with reference to FIG. 5, the
detecting unit 507 has a function of detecting an HDD at
which a fault occurs, through the HDD controller 309. For
example, the detecting unit 507 detects an HDD into which
the writing of the data is not normally executed as an HDD at
which a fault occurs, from the HDD1 to HDD3.

For example, when the writing of the data D1# to be written
is not normally completed into the LBA1 of the HDD1 as the
result of the execution of the writing process in (A) above, the
detecting unit 507 detects the HDD1 as the HDD at which a
fault occurs. When the writing of the parity data P1# is not
normally completed into the LBA1 of the HDD3 as the result
of the execution of the writing process in (A) above, the
detecting unit 507 detects the HDD3 as the HDD at which a
fault occurs.

For example, the detecting unit 507 refers to the writing
state table 700 and detects the HDD of the HDD number set
in the writing failed HDD number field as the HDD in which
the fault occurs. Thereby, the detecting unit 507 can detect the
HDD for which the writing of the data is not normally
executed as the HDD in which the fault occurs.

The detecting unit 507 detects the HDD for which the
reading of the data is not normally executed through the HDD
controller 309 as the HDD at which a fault occurs. For
example, when the data read from the HDD includes infor-
mation that indicates a reading error, the detecting unit 507
detects the HDD as the HDD in which the fault occurs.

The detecting unit 507 may transmit a diagnosis command
to each of the HDD1 to HDD3 through the HDD controller
309. The detecting unit 507 transmits the diagnosis command
through the HDD controller 309 and determines whether the
detecting unit 507 receives a response signal responding to
the diagnosis command from each of the HDD1 to HDD3
within a predetermined time period after transmitting the
diagnosis command.

For example, the detecting unit 507 transmits the diagnosis
command to the HDD1 through the HDD controller 309.
Thereafter, when the detecting unit 507 receives a response
signal responding to the diagnosis command from the HDD1
within a predetermined time period, the detecting unit 507
detects the HDD1 as an HDD to which no fault occurs. On the
other hand when the detecting unit 507 does not receive the
response signal responding to the diagnosis command within
the predetermined time period, the detecting unit 507 detects
the HDD1 as an HDD in which the fault occurs.

When the detecting unit 507 detects an HDD in which the
fault occurs, the detecting unit 507 causes the HDD in which
the fault occurs at be off line (disconnected) and updates the
management data 410 to 430 of the HDD1 to HDD3 depicted
in FIG. 4 through the HDD controller 309. An example of the
updating of the management data 410 to 430 of the HDD1 to
HDD3 will be described.

FIG. 9 is an explanatory diagram (Part I) of the example of
the updating of the management data 410 to 430. In FIG. 9,
(9-1) is an example of the updating of the management data
410 to 430 executed when a fault occurs at the HDD2. When
the detecting unit 507 detects the HDD2 at which the fault
occurs, the detecting unit 507 updates the state of the HDD2
of the management data 410 from “normal” to “abnormal”
through the HDD controller 309.

35

40

45

16

The detecting unit 507 updates the state of the HDD2 ofthe
management data 420 and 430 through the HDD controller
309 from “normal” to “abnormal”. According to the manage-
ment data 410 to 430 of (9-1), it can be identified that the state
of the HDD?2 is “abnormal” of the HDD1 to HDD3.

The management data 420 is stored in the system area 315
of the HDD2 in which the fault occurs. Therefore, due to the
fault of the HDD2, the HDD controller 309 may be unable to
access the system area 315 of the HDD2 and may be unable to
update the management data 420. The state “(abnormal)” of
the HDD2 of the management data 420 depicted in (9-1)
represents that the state of the HDD2 in the management data
420 is “abnormal” when the HDD controller 309 can update
the management data 420.

In FIG. 9, (9-2) is an example of the updating of the man-
agement data 410 and 430 executed when another fault fur-
ther occurs to the HDD3 after the fault occurs at the HDD2.
When the detecting unit 507 detects the HDD3 to which the
other fault occurs, the detecting unit 507 updates the state of
the HDD3 of the management data 410 from “normal” to
“abnormal” through the HDD controller 309.

The detecting unit 507 updates the state of the HDD3 ofthe
management data 430 from “normal” to “abnormal” through
the HDD controller 309. In this case, because the HDD2 is
disconnected, the detecting unit 507 does not update the
management data 420 of the HDD2 to which the fault already
occurs. According to the management data 410 and 430 of
(9-2), it can be identified that the states of the HDD2 and
HDD3 are each “abnormal”, of the HDD1 to HDD3.

The management data 430 is stored in the system area 316
of the HDD3 to which the other fault occurs. Therefore, due
to the other fault of the HDD3, the HDD controller 309 may
be unable to access the system area 316 of the HDD3 and may
be unable to update the management data 430. The state
“(abnormal)” of the HDD3 of the management data 430
depicted in (9-2) represents that the state of the HDD3 in the
management data 430 becomes “abnormal” when the HDD
controller 309 can update the management data 430.

The result of the detection may be stored in a detection
result table 1000 depicted in FIG. 10. The detection result
table 1000 is realized, for example, by the memory 307. A
specific example of the detection result table 1000 will be
described.

FIG. 10 is an explanatory diagram of the specific example
of the detection result table 1000. In FIG. 10, the detection
result table 1000 has therein fields for the HDD number and
the detection time, and the detection result is stored as a
record by setting information in each of the fields. The HDD
number is an identifier of an HDD at which a fault occurs. The
detection time is the time at which the HDD is detected at
which a fault occurs.

In FIG. 10, (10-1) is an example of updating of the detec-
tion result table 1000 executed when the HDD2 is detected as
the HDD at which a fault occurs. In this case, the detecting
unit 507 writes the HDD number “2” of the HDD2 into the
HDD number field of the detection result table 1000 and also
writes the detection time “02:11:55 on 2010/Aug/23” at
which the HDD?2 is detected.

In FIG. 10, (10-2) is an example of updating of the detec-
tion result table 1000 executed when the HDD3 is detected as
the HDD at which a fault occurs. In this case, the detecting
unit 507 writes the HDD number “3” of the HDD3 into the
HDD number field of the detection result table 1000 and also
writes the detection time “12:09:22 on 2010/Aug/24” at
which the HDD?2 is detected.

When a fault occurs at each of two or more of the HDDs in
the storage system 300 (multi-dead state), the storage system

US 9,081,697 B2

17
300 can not restore the data in the HDDs in which the faults
occur and therefore, changes to the system down state. The
determining unit 508 determines whether the storage system
300 needs to run to the system down state.

The determining unit 508 has a function of determining
whether the number “x” of HDDs to which faults occur is
greater than or equal to a predetermined number “X”* based on
the result ofthe detection. The predetermined number X is set
to be a value such that the storage system 300 changes to the
multi-dead state when a fault occurs at each of X or more
HDDs therein. For example, the predetermined number X is
set to be a value “X=Y+1” acquired by adding one to the
number “Y” of parity drives.

Because the storage system 300 is a RAID-3 system, the
numberY of parity drives is “Y=1"". Therefore, the predeter-
mined number X is “X=2". For a RAID-5 storage system (for
example, a storage system 2000 described later), the number
Y of parity drives is “Y=1". Therefore, the predetermined
number X is “X=2". For a RAID-6 storage system, the num-
berY of parity drives is “Y=2". Therefore, the predetermined
number X is “X=3".

For example, the determining unit 508 refers to the man-
agement data 410 to 430 of the HDD1 to HDD3 through the
HDD controller 309 and identifies the numbers x1, x2, and x3
of HDDs whose states are “abnormal” of the HDD1 to HDD3.

In the example of (9-1) depicted in FIG. 9, the determining
unit 508, refers to the management data 410 of'the HDD1 and
identifies the number x1 that is “x1=1" of HDD whose state is
“abnormal” ofthe HDD1 to HDD3; refers to the management
data 420 of the HDD2 and identifies the number x2 that is
“x2=1” of HDD whose state is “abnormal” of the HDD1 to
HDD3; and refers to the management data 430 of the HDD3
and identifies the number x3 that is “x3=1" of HDD whose
state is “abnormal” of the HDD1 to HDD3.

The determining unit 508 identifies the largest value of the
numbers x1, x2, and x3 of HDD as the number x of HDDs in
which the faults occur. In the above, all the values of the
number of HDD x1, x2, x3 are “one” and therefore, the
number x of HDDs in which the faults occur is “x=1". There-
fore, the determining unit 508 determines that the number x
(x=1) of HDD in which the fault occurs is smaller than the
predetermined number X (X=2).

In the example of (9-2) depicted in FIG. 9, the determining
unit 508, refers to the management data 410 of'the HDD1 and
identifies the number x1 that is “x1=2" of HDD whose state is
“abnormal” ofthe HDD1 to HDD3; refers to the management
data 420 of the HDD2 and identifies the number x2 that is
“x2=1” of HDD whose state is “abnormal” of the HDD1 to
HDD3; and refers to the management data 430 of the HDD3
and identifies the number x3 that is “x3=2" of HDD whose
state is “abnormal” of the HDD1 to HDD3.

The determining unit 508 identifies the largest value of the
numbers x1, x2, and x3 of HDD as the number x of HDDs in
which the faults occur. In the above, the values of the number
of HDD x1, x3 stored in the management data 410 or the
management data 430 are “two” and the maximum. There-
fore, the number x of HDDs in which the faults occur is
“x=2". Therefore, the determining unit 508 determines that
the number x (x=2) of HDD in which the fault occurs is
greater than or equal to the predetermined number X (X=2).

When the number x of HDDs in which the faults occur is
greater than or equal to the predetermined number X, the
determining unit 508 notifies the CPU 301 that the number x
of HDDs in which the faults occur is greater than or equal to
the predetermined number X. Because the storage system 300

10

15

20

25

30

35

40

45

50

55

60

65

18

is in the multi-dead state, the determining unit 508 demands
the CPU 301 to cause the storage system 300 to run to the
system down state.

When the determining unit 508 notifies the CPU 301 that
the number x of HDDs in which the faults occur is greater than
or equal to the predetermined number X, the CPU 301 causes
the storage system 300 to run to the system down state.
Because the storage system 300 is in the multi-dead state, the
CPU 301 causes the storage system 300 to run to the system
down state.

When the storage system 300 is restored from the system
down state, for example, the configuration of the storage
system 300 is returned to the non-redundant configuration
maintained immediately before the storage system 300
changes to the system down state. For example, resetting of
the hardware of (or turning off and on of the power of) the
storage system 300 is executed by the CPU 301 or an opera-
tional input by the user.

The processor 306 identifies the order of occurrences of the
faults for the plural HDDs in which the faults occur. The
specific content of the process of identifying the order of the
occurrences of the faults to HDDs will be described later.
Thereafter, the processor 306 causes the HDDs other than the
HDD in which the fault occurs last to be off line, of the plural
HDDs in which the faults occur. The processor 306 causes
only the HDD in which the fault occurs last to be off line, of
the plural HDDs in which the faults occur.

In this case, the processor 306 updates the state of the HDD
in which the fault occurs last in each of the management data
410 to 430 of the HDD1 to HDD3 through the HDD controller
309. However, the management data to be updated is the
management data of the HDD that is on line. In the example
depicted in (9-2) of FIG. 9, the processor 306 changes the
state of the HDD3 in each of the management data 410 and
430 of the HDD1 and HDD?3 that are on line from “abnormal”
to “normal”.

The storage system 300 is re-started by the CPU 301 or an
operational input by the user. For this re-starting up, the CPU
301 may output a start-up notification for the storage system
300 to the processor 306. Thereby, the configuration of the
storage system 300 can be returned to the non-redundant
configuration maintained immediately before the storage sys-
tem 300 changes to the system down state. The storage system
300 is re-started by the CPU 301 or the operational input by
theuser in this case, the processor 306 may re-start the storage
system 300.

The determining unit 508 has a function of determining
whether the HDDs are re-started for which the writing pro-
cesses are executed in response to the write request. In this
case, the HDDs for which the writing processes are executed
in response to the write requests are the HDD1 and HDD3 for,
for example, the writing processes of (A) and (B). The HDD
for which the writing process is executed in response to the
write request is the HDD3 for the writing process of (C).

For example, when the determining unit 508 receives from
the CPU 301 the start-up notification for the storage system
300, the determining unit 508 determines that the HDD is
re-started for which the writing process is executed in
response to the write request. The determining unit 508 may
determine that the HDD is re-started for which the writing
process is executed in response to the write request when the
determining unit 508 receives a start-up completion notifica-
tion from the HDD for which the writing process is executed
in response to the write request.

The writing instructing unit 509 has a function of instruct-
ing the HDD controller 309 to write the data Di duplicated in
the writing buffer B into the LBA of the duplication source

US 9,081,697 B2

19

when the determining unit 508 determines that the HDD is
re-started for which the writing process is executed in
response to the write request. The “LLBA of the duplication
source of the data Di” is the LBA]j of the HDDk of the request
destination of the write request.

The writing instructing unit 509 has a function of instruct-
ing the HDD controller 309 to write the parity data Pj dupli-
cated in the writing buffer B into the LBA of the duplication
source when the determining unit 508 determines that the
HDD is re-started for which the writing process is executed in
response to the write request. The “LLBA of the duplication
source of the parity data Pj” is the LBA] that is the storage
destination of the parity data Pj whose generation source is
the data Di stored in the LBAj of the HDDk of the request
destination.

In the example depicted in FIG. 8, the writing instructing
unit 509 instructs the HDD controller 309 to write the data D1
duplicated in the writing buffer B1 into the LBA1 of the
HDD1. As a result, the HDD controller 309 reads the data D1
stored in the writing buffer B1 and writes the data D1 into the
LBA1 of the HDDI1. In this case, for example, the HDD
controller 309 reads the data D1 from an arbitrary accessible
writing buffer B1 of the writing buffers B1 of the HDD1 to
HDD3. Thereby, the data D1 is written back into the LBA1 of
the duplication source of the HDDI1.

The writing instructing unit 509 instructs the HDD con-
troller 309 to write the parity data P1 duplicated in the writing
buffer B2 into the LBA1 of the HDD3. As a result, the HDD
controller 309 reads the parity data P1 stored in the writing
buffer B2 and writes the parity data P1 into the LBA1 of the
HDD3. In this case, for example, the HDD controller 309
reads the parity data P1 from an arbitrary accessible writing
buffer B2 of the writing buffers B2 of the HDD1 to HDD3.
Thereby, the parity data P1 is written back into the LBA1 of
the duplication source of the HDD3. As a result, the consis-
tency of the data can be established between the HDD1 and
HDD3.

When multiple parity data are duplicated in the writing
buffer B, the writing instructing unit 509 instructs the HDD
controller 309 to write the multiple parity data duplicated in
the writing buffer B into the LBA of the duplication source.
For example, for a RAID-6 storage system, the duplication
instructing unit 504 instructs the HDD controller 309 to write
two kinds of parity data duplicated in the writing buffer B into
the LBA of the duplication source.

An example will be described of a transition of the storage
content of the LBA1 of each of the HDD1 to HDD3 occurring
when the storage system 300 changes from the multi-dead
state into the non-redundant configuration. The description
will be made taking an example of the case where the writing
process (in (B) above) is executed in response to the write
request 600 in the storage system 300 in the non-redundant
configuration whose HDD2 is off line.

FIG. 11 is an explanatory diagram (Part I) of an example of
the transition of the storage content of the LBA1 of each of the
HDD1 to HDD3. In (11-1) of FIG. 11, the writing process is
executed in response to the write request 600 and as a result,
the writing of the data D1# to be written is successfully
executed for the LBA1 of the HDD1 and the writing of the
new parity data P1# into the LBA1 of the HDD3 has failed.

For example, a portion of the parity data P1# can not be
written into the LBA1 ofthe HDD3 and therefore, the storage
content of the LBA1 of the HDD?3 is the parity data Px that is
different from the parity data P1#. In this case, the HDD3 is
detected as the HDD in which the fault occurs and is caused
to be off line. Therefore, the storage system 300 changes to
the multi-dead state and changes to the system down state.

15

25

40

45

20

In (11-2) of FIG. 11, the hardware of the storage system
300 is reset and as a result, the HDD3 is re-started and the
storage system 300 is restored from the multi-dead state to the
non-redundant configuration. The parity data Px stored in the
LBA1 of the HDD3 is data that is different from the original
parity data P1#. Therefore, at this moment, inconsistency of
the data occurs between the HDD1 and HDD3.

In (11-3) of FIG. 11, the data D1 duplicated in the writing
buffer B1 is written into the LBA1 of the HDD1 and the parity
data P1 duplicated in the writing buffer B2 is written into the
LBA1 of the HDD3. As a result, the HDD1 and HDD3 are
restored into the respective states maintained before the start
of'the writing process and therefore, consistency of the data is
assured between the HDD1 and HDD3, and the data D2 can
be restored that is stored in the LBA1 of the HDD2 that is off
line.

<Writing Back Duplicated Data Di and Duplicated Parity
Data Pj When Writing is Failed>

In the above, the data Di and the parity data Pj that are
duplicated in the writing buffer B are written into the LBA of
the duplication source when the HDD is re-started for which
the writing process is executed in response to the write
request. However, the manner of writing is not limited to this.

The turning off and on of the power of the storage system
300 may occur due to a momentary power failure, etc. There-
fore, after the writing process is normally completed in
response to the write request, the power of the storage system
300 may be turned off and on due to a momentary power
failure and the storage system 300 may be re-started. In this
case, when the data Di and the parity data Pj that are dupli-
cated in the writing buffer B are written into the LBA of the
duplication source after the re-starting up, the storage content
of'the LBA ofthe duplication source is returned to the storage
content maintained therein before the writing process is
executed in response to the write request.

Therefore, when the success and failure determining unit
506 determines that the writing process has failed and the
determining unit 508 determines that the HDD is re-started,
the writing instructing unit 509 may write the data Di dupli-
cated in the writing buffer B into the LBA of the duplication
source and similarly, may write the parity data Pj duplicated
in the writing buffer B into the LBA of the duplication source.

For example, the writing instructing unit 509 determines
whether the writing state flag of the writing state table 700
depicted in FIG. 7 is “0”. When the writing instructing unit
509 determines that the writing state flag is “0”, this indicates
that the writing process is not yet executed and therefore, the
writing instructing unit 509 does not execute the writing of
the data Di and the parity data Pj duplicated in the writing
buffer B into the LBA of the duplication source even when the
determining unit 508 determines that the HDD is re-started.

On the other hand when the writing instructing unit 509
determines that the writing state flag of the writing state table
700 is “1” and the determining unit 508 determines that the
HDD is re-started, this indicates that the HDD is re-started
during the writing process and the writing process inresponse
to the write request is not normally completed. Therefore, the
writing instructing unit 509 writes the data Di and the parity
data Pj duplicated in the writing buffer B into the LBA of the
duplication source. Thereby, even when the HDD is re-started
because of a reason such as a momentary power failure after
the writing process is successfully executed in response to the
write request, the writing is prevented of the data Di and the
parity data Pj duplicated in the writing buffer B back into the
LBA of the duplication source.

US 9,081,697 B2

21

<Restoration from Multi-Dead State to Redundant Con-
figuration>

In the above, the case has been described where, when the
storage system 300 in the system down state is restored, the
storage system 300 is restored to the non-redundant configu-
ration maintained immediately before the storage system 300
changes to the system down state. However, the flow of the
restoration is not limited to this.

For example, in the writing process executed in the redun-
dant configuration of (A) above, the writing of the data D1#to
be written into the HDD1 may be failed; the writing of the
parity data P1# into the HDD3 may be failed; and therefore,
the storage system 300 may run to the multi-dead state. In this
case, when the storage system 300 in the system down state is
restored, the storage system 300 may be restored from the
multi-dead state to the redundant configuration.

For example, the hardware of the storage system 300 in the
system down state is first reset by the CPU 301 or an opera-
tional input by the user. The storage system 300 is re-started
by the CPU 301 or another operational input by the user. In
this case, both of the HDD1 and HDD3 in which the faults
occur are caused to be on line. Thereby, the configuration of
the storage system 300 can be returned to the redundant
configuration.

Thereafter, when the determining unit 508 determines that
the HDD is re-started for which the writing process is
executed in response to the write request, the writing instruct-
ing unit 509 writes the data Di duplicated in the writing buffer
B into the LBA of the duplication source through the HDD
controller 309 at the start of the writing process, and writes the
parity data Pj duplicated in the writing buffer B into the LBA
of the duplication source through the HDD controller 309.

An example will be described of a transition of the storage
content of the LBA1 of each of the HDD1 to HDD3 occurring
when the storage system 300 is restored from the multi-dead
state to the redundant configuration. The description will be
made taking an example of the case where the writing process
(in (A) above) is executed in response to the write request 600
in the storage system 300 in the redundant configuration.

FIG. 12 is an explanatory diagram (Part II) of the example
of'the transition of the storage content of the LBA1 of each of
the HDD1 to HDD3. In (12-1) of FIG. 12, the writing process
is executed in response to the write request 600 and as a result,
the writing of the data D1# to be written into the LBA1 of the
HDD1 has failed and the writing of the parity data P1# into
the LBA1 of the HDD3 is simultaneously failed.

For example, a portion of the data D1# to be written can not
be written into the LBA1 of the HDD1 and therefore, the
storage content of the LBA1 of the HDD1 is the data Dx that
is different from the data D1# to be written; and a portion of
the parity data P1# can not be written into the LBA1 of the
HDD3 and therefore, the storage content of the LBA1 of the
HDD3 is the parity data Px that is different from the parity
data P1#. In this case, the HDD1 and HDD3 are detected as
the HDDs in which the faults occur and are caused to be off
line. Therefore, the storage system 300 changes to the multi-
dead state and changes to the system down state.

In (12-2) of FIG. 12, the hardware of the storage system
300 is reset and as a result, the HDD1 and HDD3 are re-
started and the storage system 300 is restored from the multi-
dead state to the redundant configuration. The data Dx stored
in the LBA1 of the HDD1 is data that is different from both of
the data D1 and the data D1# to be written that are initially
stored in the HDD1. The parity data Px stored in the LBA1 of
the HDD3 is data that is different from both of the parity data
P1 and the parity data P1# that are initially stored in the

10

15

20

25

30

35

40

45

50

55

60

65

22

HDD3. Therefore, at this moment, inconsistency of the data
occurs between the HDD1 and HDD3.

In (12-3) of FIG. 12, the data D1 duplicated in the writing
buffer B1 at the start of the writing process is written into the
LBA1 of the HDD1 and the parity data P1 duplicated in the
writing buffer B2 is written into the LBA1 ofthe HDD3. As a
result, the consistency of the data is assured between the
HDD1 and HDD3. The data D2 stored in the LBA1 of the
HDD2 can thereafter be restored even when the HDD2 is
caused to be off line.

In the writing process executed in the redundant configu-
ration in response to the write request, even when the writing
of'the data Di into the HDDk of the request destination or the
parity data Pj into the parity drive has failed and the storage
system 300 changes into the non-redundant configuration, the
system can be operated. Therefore, even when the storage
system 300 changes into the non-redundant configuration
from the redundant configuration as a result of the execution
of the writing process in response to the write request, the
updating unit 502 changes the writing state flag of the writing
state table 700 from “1” to “0”.

<When HDDk of Request Destination of Write Request is
Off Line>

When the data D2 of the LBA1 of the HDD2 that is off line
is updated to the data D2# to be written as in (C) above, only
the parity data P1 is updated that is stored in the LBA1 of the
HDD3. Therefore, when a write request is issued for the
HDD2 that is off line, duplication of only the parity data P1
stored in the LBA1 of the HDD3 into the writing buffer only
has to be executed.

The object determining unit 510 has a function of deter-
mining whether any fault occurs at the HDDk of the request
destination of the write request based on the result of the
detection. For example, the object determining unit 510 deter-
mines whether the state of the HDDk of the request destina-
tion is “abnormal” by referring to the management data 410 to
430 of the HDD1 to HDD3 through the HDD controller 309.

When the state of the HDDk of the request destination is
“abnormal” in any one of the management data 410 to 430,
the object determining unit 510 determines that a fault occurs
at the HDDXK. On the other hand, when the state of the HDDk
of the request destination is “normal” in all of the manage-
ment data 410 to 430, the object determining unit 510 deter-
mines that no fault occurs at the HDDk.

The object determining unit 510 may determine whether
any fault occurs at the HDDk of the request destination by
referring to the detection result table 1000 depicted in FIG.
10. For example, the object determining unit 510 determines
whether a record corresponding to the HDD number included
in the write request is present in the detection result table
1000.

When the object determining unit 510 determines that a
record is present that corresponds to the HDD number
included in the write request, the object determining unit 510
determines that a fault occurs at the HDDk of the request
destination. On the other hand when the object determining
unit 510 determines that no record is present that corresponds
to the HDD number included in the write request, the object
determining unit 510 determines that no fault occurs at the
HDDk of the request destination.

When the object determining unit 510 determines that a
fault occurs at the HDDk of the request destination, the dupli-
cation instructing unit 504 duplicates the parity data Pj whose
generation source is the data Di stored in the LBAj of the
HDDk of the request destination, into the writing buffer B
through the HDD controller 309. When the object determin-
ing unit 510 determines that a fault occurs at the HDDk of the

US 9,081,697 B2

23
request destination, the duplication instructing unit 504 does
not duplicate the data Di stored in the LBA]j of the HDDk of
the request destination, into the writing buffer B.

In this case, the determining unit 508 determines whether
the HDD for which the writing process is executed in
response to the write request is re-started, after the parity data
Pj is duplicated into the writing buffer B. For example, when
the determining unit 508 determines that the HDD for which
the writing process is executed in response to the write
request is re-started, the writing instructing unit 509 writes
the parity data Pj duplicated in the writing buffer B into the
LBAj of the duplication source through the HDD controller
309.

<When Parity Drive is Off Line>

When the parity drive is off line, updating is executed of
only the data Di of the LBA;j of the HDDk of the request
destination of the write request. Therefore, when the parity
drive is off line, duplication of only the data Di stored in the
LBAj of the HDDk of the request destination of the write
request only has to be executed.

The object determining unit 510 has a function of deter-
mining whether any fault occurs at the HDD of the storage
destination of the parity data Pj whose generation source is
the data Di stored in the LBAj of the HDDk of the request
destination of the write request based on the result of the
detection. For example, the object determining unit 510 deter-
mines whether the state of the parity drive (the HDD3) is
“abnormal” by referring to the management data 410 to 430
of the HDD1 to HDD3 through the HDD controller 309.

When the state of the parity drive is “abnormal” in at least
any one of the management data 410 to 430, the object deter-
mining unit 510 determines that a fault occurs at the parity
drive. On the other hand, when the state of the parity drive is
“normal” in all of the management data 410 to 430, the object
determining unit 510 determines that no fault occurs at the
parity drive.

The object determining unit 510 may determine whether
any fault occurs at the parity drive by referring to the detection
result table 1000 depicted in FIG. 10. For example, the object
determining unit 510 determines whether a record corre-
sponding to the HDD number “3” of the HDD3 that is the
parity drive is present in the detection result table 1000.

When the object determining unit 510 determines that a
record corresponding to the HDD number “3” of the HDD3 is
present, the object determining unit 510 determines that a
fault occurs at the parity drive. On the other hand, when the
object determining unit 510 determines that no record corre-
sponding to the HDD number “3” of the HDD3 is present in
the detection result table 1000, the object determining unit
510 determines that no fault occurs at the parity drive.

When the object determining unit 510 determines that a
fault occurs at the parity drive, the duplication instructing unit
504 duplicates the data Di stored in the LBAj of the HDDk of
the request destination into the writing buffer B through the
HDD controller 309, and does not duplicate the parity data Pj
whose generation source is the data Di stored in the LBA;j of
the HDDk of the request destination into the writing bufter B.

In this case, after the data Di is duplicated into the writing
buffer B, the determining unit 508 determines whether the
HDD is re-started for which the writing process is executed in
response to the write request. For example, when the deter-
mining unit 508 determines that the HDD is re-started for
which the writing process is executed in response to the write
request, the writing instructing unit 509 writes the data Di
duplicated in the writing buffer B into the LBA]j ofthe HDDk
of the request destination through the HDD controller 309.

10

15

20

25

30

35

40

45

50

55

60

65

24

<Duplication of Data Di# to be Written, into Writing
Buffer B>

The duplication instructing unit 504 may duplicate the data
Di# to be written included in the write request into the writing
buffer B through the HDD controller 309. For example, when
the write request 600 is received, the duplication instructing
unit 504 duplicates the data D1 stored in the LBA1 of the
HDD1 into the writing buffer B1 of each of the HDD1 to
HDD3 through the HDD controller 309; duplicates the parity
data P1 whose generation source is the data D1 stored in the
LBA1 of the HDD1 into the writing buffer B2 of each of the
HDD1 to HDD3 through the HDD controller 309; and further
duplicates the data D1# to be written included in the write
request 600 into the writing buffer B3 (see FIG. 8) of each of
the HDD1 to HDD3 through the HDD controller 309.

Inthis case, after the data Di, the parity data Pj, and the data
Di# to be written are duplicated into the writing buffer B, the
determining unit 508 determines whether the HDD is re-
started for which the writing process is executed in response
to the write request. For example, after the data D1, the parity
data P1, and the data D1# to be written are respectively
duplicated into the writing buffers B1 to B3, the determining
unit 508 determines whether the HDD is re-started for which
the writing process is executed in response to the write
request 600.

When the determining unit 508 determines that the HDD is
re-started, the writing instructing unit 509 writes the data Di
duplicated in the writing buffer B into the LBA;j of the request
destination through the HDD controller 309 and writes the
parity data Pj duplicated in the writing buffer B into the LBAj
of the duplication source through the HDD controller 309.

Thereafter, the writing instructing unit 509 writes the data
Di# to be written duplicated in the writing buffer B into the
LBA]j of the request destination through the HDD controller
309 and write the parity data Pj# whose generation source is
the data Di# to be written, into the LBAj of the duplication
source of the parity data Pj through the HDD controller 309.

For example, when the determining unit 508 determines
that the HDD is re-started for which the writing process is
executed in response to the write request 600, the writing
instructing unit 509 writes the data D1 duplicated in the
writing buffer B1 into the LBA1 of the HDD1 of the request
destination through the HDD controller 309 and writes the
parity data P1 duplicated in the writing buffer B2 into the
LBA1 of the HDD3 through the HDD controller 309.

Thereafter, the writing instructing unit 509 calculates the
parity data P1# whose generation source is the data D1# to be
written duplicated in the writing buffer B3 through the HDD
controller 309; writes the data D1# to be written duplicated in
the writing buffer B3 into the LBA1 of the HDD1 of the
request destination through the HDD controller 309; and
writes the calculated parity data P1# into the LBA1 of the
HDD3 of'the duplication source of the parity data P1 through
the HDD controller 309.

Thereby, the data Di and the parity data Pj duplicated in the
writing buffer B are written back, thereby, the consistency of
the data between the HDDs after re-starting up is assured, and
thereafter, the writing process executed in response to the
write request can again be executed using the data Di# to be
written duplicated in the writing buffer B.

When the writing processes of the various data items
instructed by the writing instructing unit 509 (hereinafter,
each referred to as “data writing process™) are successfully
executed, the updating unit 502 changes the writing state flag
of'the writing state table 700 from “1”’to “0”. For example, the
consistency of the data between the HDDs is assured by
writing back the data Di and the parity data Pj that are dupli-

US 9,081,697 B2

25
cated in the writing buffer B into the LBAj of the duplication
source and therefore, the updating unit 502 changes the writ-
ing state flag of the writing state table 700 from “1” to “0”.

When the updating unit 502 changes the writing state flag
of the writing state table 700 from “1” to “0”, the updating
unit 502 may initialize the writing buffer B. When the writing
process or the data writing process in response to the write
request is successfully executed, the updating unit 502 dis-
cards the data Di, the parity data Pj, and the data Di# to be
written that are duplicated in the writing buffers B1 to B3.

In the case where the data writing processes instructed by
the writing instructing unit 509 are failed, the data Di dupli-
cated in the writing buffer B may thereafter be used as the read
data when the data Di is read. In the case where the data
writing processes are failed, the parity data Pj duplicated in
the writing buffer B may thereafter be used as the read data
when the parity data Pj is read, and the data Di# to be written
duplicated in the writing buffer B may thereafter be used as
the read data when the data Di# to be written is read. Thereby,
the storage system 300 can normally be operated until a new
write request is received.

<Patterns that do not Need Duplication of Data Di and
Parity Data Pj>

When the data Di# included in the write request is dupli-
cated into the writing buffer B, the duplication may be unnec-
essary of the data Di of the LBAj of the HDDk of the request
destination and the parity data Pj whose generation source is
the data Di into the writing buffer B. The writing process may
be able to again be executed in response to the write request
without restoring the state to that maintained immediately
before the reception of the write request by writing back the
data Di and the parity data Pj into the LBAj of the duplication
source.

For example, in the case where the data of the HDD that is
offline does not need to be restored when the writing process
is executed in response to the write request, the duplication is
unnecessary of the data Di and the parity data Pj into the
writing buffer B. Patterns 1 to 3 will be described that do not
need the duplication of the data Di and the parity data Pj into
the writing buffer B.

(Pattern 1) When Write Request is Received in Redundant
Configuration

When the storage system 300 is in the redundant configu-
ration, the writing process executed in response to the write
request can again be executed using the data Di# to be written
duplicated in the writing buffer B without writing the data Di
and the parity data Pj duplicated in the writing bufter B into
the LBA]j of the duplication source. The determining unit 508
determines whether the storage system 300 is in the redun-
dant configuration.

The RAID-3, -5, and -6 storage system, etc. are each in the
redundant configuration when the number x of HDDs to
which faults occur is smaller than the number Y of parity
drives. Therefore, the determining unit 508 determines
whether the number x of HDDs to which faults occur is
smaller than the number Y of parity drives. The numberY of
parity drives of the storage system 300 is “Y=1"" and there-
fore, the determining unit 508 determines whether the num-
ber x of HDDs to which faults occur is “x=0".

When the determining unit 508 determines that the number
x of HDDs to which faults occur is smaller than the numberY
of parity drives, the duplication instructing unit 504 dupli-
cates the data Di# to be written included in the write request
into the writing buffer B through the HDD controller 309 and
does not duplicate the data Di and the parity data Pj into the
writing buffer B.

40

45

60

26

In this case, the determining unit 508 determines whether
the HDD is re-started for which the writing process is
executed in response to the write request, after the data Di# to
be written included in the write request is duplicated into the
writing buffer B. When the determining unit 508 determines
that the HDD is re-started, the writing instructing unit 509
writes the data Di# to be written duplicated in the writing
buffer B into the LBAj of the request destination through the
HDD controller 309 and writes the parity data Pj# whose
generation source is the data Di# to be written, into the LBAj
of the duplication source of the parity data Pj through the
HDD controller 309.

Thereby, such processes can be omitted as the duplication
processes of the data Di and the parity data Pj into the writing
buffer B and the data writing processes of the data Di and the
parity data Pj duplicated in the writing buffer B into the LBAj
of the duplication source.

An example will be described of the transition of the stor-
age content of the LBA1 of each of the HDD1 to HDD3
occurring when the write request is received in the redundant
configuration. The description will be made taking an
example of the case where the writing process (in (A) above)
is executed in response to the write request 600 in the storage
system 300 in the redundant configuration.

FIG. 13 is an explanatory diagram (Part III) of the example
of the transition of the storage content of the LBA1 of the
HDD1 to HDD3. In (13-1) of FIG. 13, the writing process is
executed in response to the write request 600 and as a result,
the writing of the data D1# to be written, into the LBA1 of'the
HDD1 has failed and the writing of the parity data P1# into
the LBA1 of'the HDD3 has failed. In this case, the HDD1 and
HDD3 are detected as the HDDs to which faults occur and are
caused to be off line. Therefore, the storage system 300
changes to the multi-dead state and changes to the system
down state.

In (13-2) of FIG. 13, the hardware of the storage system
300 is reset and as a result, the HDD1 and HDD3 are re-
started and the storage system 300 is restored from the multi-
dead state to the redundant configuration. The data Dx stored
in the LBA1 of the HDD1 is data that is different from both of
the data D1 and the data D1# to be written. The parity data Px
stored in the LBA1 of the HDD3 is data that is different from
both of the parity data P1 and the parity data P1#. Therefore,
at this moment, inconsistency of the data occurs between the
HDD1 and HDD3.

In (13-3) of FIG. 13, the data D1# to be written duplicated
in the writing buffer B3 is written in the LBA1 of the HDD1
and the parity data P1# whose generation source is the data
D1# to be written duplicated in the writing buffer B3
(P1#=D1#x0rD2) is written in the LBA1 of the HDD3. As a
result, the consistency of the data is assured between the
HDD1 and HDD3 and therefore, the data D2 stored in the
LBA1 of the HDD2 can be restored even when the HDD2 is
off line.

(Pattern 2) When HDDK of Request Destination is Off Line

When the HDDk of the request source is off line, the
writing process executed in response to the write request can
again be executed using the data Di# to be written duplicated
in the writing buffer B without writing the parity data Pj
duplicated in the writing buffer B into the LBA;j of the request
source.

When the object determining unit 510 determines that a
fault occurs at the HDDk of the request destination, the dupli-
cation instructing unit 504 duplicates the data Di# to be writ-
ten included in the write request into the writing buffer B
through the HDD controller 309 and does not duplicate the
data Di and the parity data Pj into the writing buffer B.

US 9,081,697 B2

27

In this case, the determining unit 508 determines whether
the HDD is re-started for which the writing process is
executed in response to the write request, after the data Di#to
be written included in the write request is duplicated into the
writing buffer B. When the determining unit 508 determines
that the HDD is re-started, the writing instructing unit 509
writes the parity data Pj# whose generation source is the data
Di# to be written, into the LBAj of the duplication source of
the parity data Pj through the HDD controller 309.

Thereby, such processes can be omitted as the duplication
process of the parity data Pj into the writing buffer B and the
data writing process of the parity data Pj duplicated in the
writing buffer B into the LBAj of the duplication source.

An example will be described of the transition of the stor-
age content of the LBA1 of each of the HDD1 to HDD3
occurring when the write request is received in the state where
the HDDk of the request destination is off line. The descrip-
tion will be made taking an example of the case where the
writing process (in (C) above) is executed in response to a
write request for updating the data D2 of the LBA1 of the
HDD?2 to the data D2# to be written in the non-redundant
configuration whose HDD2 is off line.

FIG. 14 is an explanatory diagram (Part IV) of the example
of the transition of the storage content of the LBA1 of the
HDD1 to HDD3. In (14-1) of FIG. 14, the writing process is
executed in response to the write request for updating the data
D2 of the LBA1 of the HDD2 to the data D2# and as a result,
the writing of the parity data P1# into the LBA1 of the HDD3
has failed. In this case, the HDD3 is detected as the HDD at
which a fault occurs and is caused to be off line. Therefore, the
storage system 300 changes to the multi-dead state and
changes to the system down state.

In (14-2) of FIG. 14, the hardware of the storage system
300 is reset and as a result, the HDD3 is re-started and the
storage system 300 is restored from the multi-dead state to the
non-redundant configuration. The parity data Px stored in the
LBA1 of the HDD3 is data that is different from the parity
data P1. Therefore, at this moment, inconsistency of the data
occurs between the HDD1 and HDD3.

In (14-3) of FIG. 14, the parity data P1# whose generation
source is the data D2# to be written duplicated in the writing
buffer B3 (P1#=D1xorD2#) is written in the LBA1 of the
HDD3. As a result, the consistency of the data is assured
between the HDD1 and HDD3 and thereafter, the data D2# to
be written can be restored of the LBA1 ofthe HDD2 that is off
line.

(Pattern 3) When Parity Drive is Off Line

When the parity drive is off line, the write request executed
in response to the write request can again be executed using
the data Di# to be written duplicated in the writing buffer B
without writing the data Di duplicated in the writing buffer B
into the LBAj of the duplication source.

When the object determining unit 510 determines that a
fault occurs at the parity drive, the duplication instructing unit
504 duplicates the data Di# to be written included in the write
request into the writing buffer B through the HDD controller
309 and does not duplicate the data Di and the parity data Pj
into the writing buffer B.

In this case, the determining unit 508 determines whether
the HDD is re-started for which the writing process is
executed in response to the write request, after the data Di#to
be written included in the write request is duplicated into the
writing buffer B. When the determining unit 508 determines
that the HDD is re-started, the writing instructing unit 509
writes the data Di# to be written duplicated in the writing
buffer B into the LBAj of the request destination through the
HDD controller 309. Thereby, such processes can be omitted

25

35

40

45

28

as the duplication process of the data Di into the writing buffer
B and the data writing process of the data Di duplicated in the
writing buffer B into the LBA] of the duplication source.

An example of a transition of the storage content of the
LBA1 of each of the HDD1 to HDD3 occurring when the
write request is received in the case where the parity drive is
off line. The description will be made taking an example of
the case where the writing process is executed in response to
the write request 600 in the non-redundant configuration
whose HDD3 is off line.

FIG. 15 is an explanatory diagram (Part V) of the example
of'the transition of the storage content of the LBA1 of each of
the HDD1 to HDD3. In (15-1) of FIG. 15, the writing process
is executed in response to the write request 600 and as a result,
the writing of the data D1# to be written, into the LBA1 of'the
HDD1 has failed. In this case, the HDD1 is detected as the
HDD at which a fault occurs and is caused to be off line.
Therefore, the storage system 300 changes to the multi-dead
state and changes to the system down state.

In (15-2) of FIG. 15, the hardware of the storage system
300 is reset and as a result, the HDD1 is re-started and the
storage system 300 is restored from the multi-dead state to the
non-redundant configuration. The data Dx stored inthe LBA1
of'the HDD] is data that is different from both of the data D1
and the data D1# to be written.

In (15-3) of FIG. 15, the data D1# to be written duplicated
in the writing buffer B3 is written in the LBA1 of the HDD1.

In the above, the description has been made taking the
example of the case where the writing buffer B is disposed in
each of the system areas 314, 315, and 316 of the HDD1 to
HDD3. However, the writing buffer B may be disposed in the
non-volatile memory 308. When the writing buffer B is dis-
posed in the non-volatile memory 308, the duplication
instructing unit 504 and the writing instructing unit 509 can
directly access the writing buffer B without using the HDD
controller 309. The duplication instructing unit 504 does not
need to access the plural HDD1 to HDD3 to duplicate the data
Di, the parity data Pj, etc., into the writing buffer B.

Therefore, when the writing buffer B is disposed in the
non-volatile memory 308, an increase of the speed can be
facilitated of the data duplication process by the duplication
instructing unit 504 and the data writing process by the writ-
ing instructing unit 509, compared to the case where the
writing buffer B is disposed in each of the HDD1 to HDD3.
On the other hand when the writing buffer B is disposed in
each of the system areas 314 to 316 of the HDD1 to HDD3,
the amount of data stored in the non-volatile memory 308 can
be suppressed.

<Identification of Order of HDDs to which Faults Occur>

An example will be described of a specific content of a
process of identifying the order of occurrences of faults for
the plural HDDs in which the faults occur. The case will first
be described where the order of occurrences of the faults is
identified using the management data 410 to 430 of the HDD1
to HDD3 depicted in (9-2) of FIG. 9.

For example, the processor 306 refers to the management
data 410 to 430 of the HDD1 to HDD3 through the HDD
controller 309 and identifies the HDD2 and HDD3 whose
states are “abnormal” in at least any one of the management
data 410 to 430.

The processor 306 refers to an access log of the manage-
ment data 420 of the identified HDD2 through the HDD
controller 309 and identifies an access time at which the
HDD2 is accessed last (hereinafter, referred to as “access time
t1”’) and refers to an access log of the management data 430 of
the identified HDD3 through the HDD controller 309 and

US 9,081,697 B2

29

identifies an access time at which the HDD3 is accessed last
(hereinafter, referred to as “access time t2”).

The processor 306 compares the identified access times t1
and t2 with each other and identifies the order of the occur-
rences of the faults for the HDD2 and HDD3. For example,
the processor 306 identifies the order of the occurrences of the
faults to the HDD2 and HDD3 as the sequence of the access
times.

It is assumed that the access time tl is previous compared
to the access time t2. Therefore, after the fault occurs at the
HDD2, the processor 306 identifies the occurrence of the fault
to the HDD3. The description has been made taking the
example of the case where the order of the occurrences of the
faults is identified from the access logs of the management
data 410 to 430. However, the order of the occurrences of the
faults may be identified from the start-up times of the HDD1
to HDD3. For example, the processor 306 may identify the
order of the occurrences of the faults as the sequence of the
start-up times for the HDD2 and HDD3.

The case will be described where the order of occurrences
of'the faults is identified using the detection result table 1000
depicted in FIG. 10. The management data 410 to 430 of the
HDD1 to HDD3 may not properly be updated due to the faults
of the HDDs. Therefore, the processor 306 may identify the
order of the occurrences of the faults for the plural HDDs to
which faults occur by referring to the detection result table
1000.

In the example of (10-2) depicted in FIG. 10, the processor
306: refers to the HDD numbers in the detection result table
1000; identifies the HDD2 and HDD3 in which the faults
occur; refers to the detection times in the detection result table
1000; and identifies the order of the occurrences of the faults
for the plural HDD2 and HDD3 in which the faults occur.

For example, the processor 306 identifies the order of the
occurrences of the faults as the sequence of the detection
times for the HDD2 and HDD3. In this case, the detection
time “02:11:55 on 2010/Aug/23” of the HDD2 is previous to
the detection time “12:09:22 on 2010/Aug/24” of the HDD3.
Therefore, after the fault occurs at the HDD2, the processor
306 identifies the occurrence of the fault to the HDD3.

A storage control process procedure of the storage control
apparatus 101 according to the first embodiment will be
described.

FIGS. 16 and 17 are flowcharts of an example of a data
duplication process procedure of the storage control appara-
tus according to the first embodiment. In the flowchart of FIG.
16, the receiving unit 501 determines whether a write request
for the LBAj of the HDDK has been received (step S1601).

The receiving unit 501 waits for the write request to be
received (step S1601: NO). When the receiving unit 501
receives a write request (step S1601: YES), the determining
unit 508 determines whether the number x of the HDDs to
which faults occur is “x=0" (step S1602).

If'the determining unit 508 determines that the number x of
the HDDs is “x=0" (step S1602: YES), the updating unit 502
changes the writing state flag of the writing state table 700
from “0”to “1” (step S1603) and writes the HDD number “k”
and the LBA number “4” included in the received write
request into the writing state table 700 (step S1604).

The duplication instructing unit 504 duplicates the data
Di# to be written and included in the write request, into the
writing buffer B3 of each of the HDD1 to HDD3 through the
HDD controller 309 (step S1605). Thereafter, the executing
unit 505 executes the writing process in response to the
received write request (step S1606) and the procedure
progresses to step S1701 depicted in FIG. 17.

20

40

45

55

30

If the determining unit 508 determines at step S1602 that
the number x of the HDDs to which faults occur is “x=0 (step
S1602: NO), the updating unit 502 determines whether the
writing state flag of the writing state table 700 is “1” (step
S1607).

If the updating unit 502 determines that the writing state
flag is “0” (step S1607: NO), the updating unit 502 changes
the writing state flag of the writing state table 700 from “0” to
“1” (step S1608). The updating unit 502 writes the HDD
number “k” and the LBA number “j” included in the received
write request, into the writing state table 700 (step S1609).

The object determining unit 510 determines whether any
fault occurs at the parity drive (step S1610). If the object
determining unit 510 determines that a fault occurs at the
parity drive (step S1610: YES), the procedure progresses to
step S1605.

On the other hand, if the object determining unit 510 deter-
mines that no fault occurs at the parity drive (step S1610:
NO), the object determining unit 510 determines whether any
fault occurs at the HDDk of the request destination of the
write request (step S1611). If the object determining unit 510
determines that a fault occurs at the HDDk of the request
destination of the write request (step S1611: YES), the pro-
cedure progresses to step S1605.

On the other hand, if the object determining unit 510 deter-
mines that no fault occurs at the HDDk of the request desti-
nation of the write request (step S1611: NO), the procedure
progresses to step S1612. The duplication instructing unit 504
duplicates the data Di stored in the LBAj of the HDDk of the
request destination of the write request, into the writing buffer
B1 of each of the HDD1 to HDD3 through the HDD control-
ler 309 (step S1612).

The duplication instructing unit 504 duplicates the parity
data Pj whose generation source is the data Di duplicated in
the writing buffer B1, into the writing buffer B2 of each of the
HDD1 to HDD3 through the HDD controller 309 (step
S1613) and duplicates the data Di# to be written and included
in the write request, into the writing buffer B3 of each of the
HDD1 to HDD3 (step S1614), and the procedure progresses
to step S1606.

If the updating unit 502 determines at step S1607 that the
writing state flag is “1” (step S1607: YES), the procedure
progresses to step S1615. The detecting unit 507 changes
from “normal” to ““abnormal”, the state of the HDD for which
the writing has failed in each of the management data 410 to
430 of the HDD1 to HDD3 that are on line, through the HDD
controller 309 (step S1615). The HDD for which the writing
has failed is identified from, for example, the HDD number
set in the writing failed HDD number field of the writing state
table 700.

Thereafter, the detecting unit 507 causes the HDD for
which the writing has failed to be off line (step S1616). The
determining unit 508 notifies the CPU 301 that the number of
HDDs in which the faults occur is greater than or equal to two
and thereby, the storage system 300 changes to the system
down state (step S1617) and the series of process steps
according to the flowchart come to an end.

A case where the updating unit 502 determines at step
S1607 that the writing state flag is “1” (step S1607: YES) is a
case where the data writing process has failed at step S1804
depicted in FIG. 18 described later (step S1804: NO).

In the flowchart of FIG. 17, the success and failure deter-
mining unit 506 determines whether the writing process in
response to the write request executed at step S1606 depicted
in FIG. 16 is successtully executed (step S1701). If the suc-
cess and failure determining unit 506 determines that the
writing process in response to the write request is success-

US 9,081,697 B2

31
fully executed (step S1701: YES), the updating unit 502
changes the writing state flag of the writing state table 700
from “1” to “0” (step S1702) and the procedure progresses to
step S1704.

On the other hand, if the success and failure determining
unit 506 determines that the writing process in response to the
write request has failed (step S1701: NO), the updating unit
502 writes the HDD number of the HDD for which the data
writing has failed into the writing failed HDD number field of
the writing state table 700 (step S1703). Thereafter, the
detecting unit 507 determines whether any HDD is detected at
which a fault occurs (step S1704).

If the detecting unit 507 determines that no HDD is
detected to which a fault occurs (step S1704: NO), the series
of'process steps according to the flowchart come to anend. On
the other hand, if the detecting unit 507 determines that an
HDD is detected at which a fault occurs (step S1704: YES),
the procedure progresses to step S1705. The detecting unit
507 changes the state of the HDD in which the fault occurs in
each of the management data 410 to 430 of the HDD1 to
HDD3 that are on line, from “normal” to “abnormal” through
the HDD controller 309 (step S1705).

Thereafter, the detecting unit 507 causes the HDD at which
the fault occurs to be off line through the HDD controller 309
(step S1706). The determining unit 508 determines whether
the number x of HDDs to which any faults occur is “x=2”"
(step S1707). The determining unit 508 determines that the
number x is “x<2” (step s1707: NO), the updating unit 502
changes the writing state flag of the writing state table 700
from “1” to “0” (step S1708) and the series of process steps
according to the flowchart come to an end.

On the other hand the determining unit 508 determines that
the number x is “x=2” (step s1707: YES), the procedure
progresses to step S1709. The determining unit 508 notifies
the CPU 301 that the number of HDDs in which the faults
occur is greater than or equal to two and thereby, the storage
system 300 changes to the system down state (step S1709)
and the series of process steps according to the flowchart
come to an end.

Thus, when the data Di is updated associated with the
updating of the parity data Pj; the data Di, the parity data Pj,
and the data Di# to be written that are not yet updated can be
saved to the writing buffer B. When the write request is
received in the redundant configuration, only the data Di# to
be written can be saved to the writing buffer B. When the
HDDk of the request destination or the parity drive is off line,
only the data Di# to be written can be saved to the writing
buffer B.

A system restoration process procedure of the storage con-
trol apparatus 101 according to the first embodiment will be
described. The description will be made taking an example of
a case where the storage system 300 is restored from the
system down state to the non-redundant configuration main-
tained immediately before the storage system 300 changes to
the system down state. However, the case is assumed where,
after the hardware ofthe storage system 300 is reset, the HDD
caused last to be off line is caused to be on line among the
plural HDDs in which the faults occur and the storage system
300 is re-started.

FIG. 18 is a flowchart of an example of a system restoration
process procedure of the storage control apparatus 101
according to the first embodiment. In the flowchart of FIG. 18,
the determining unit 508 first determines whether the HDD
for which the writing process is executed in response to the
write request is re-started (step S1801).

The determining unit 508 waits for the HDD to be re-
started (step S1801: NO). When the determining unit 508

10

15

20

25

30

35

40

45

50

55

60

65

32
determines that the HDD is re-started (step S1801: YES), the
writing instructing unit 509 determines whether the writing
state flag of the writing state table 700 is “1” (step S1802). If
the writing instructing unit 509 determines that the writing
state flag is “0” (step S1802: NO), the series of process steps
according to the flowchart comes to an end.

On the other hand, if the writing instructing unit 509 deter-
mines that the writing state flag is “1” (step S1802: YES), the
writing instructing unit 509 executes the data writing process
(step S1803). The specific process procedure of the data writ-
ing process will be described later. Thereafter, the success and
failure determining unit 506 determines whether the data
writing process is successfully executed (step S1804).

If the success and failure determining unit 506 determines
that the data writing process is successfully executed (step
S1804: YES), the updating unit 502 changes the writing state
flag ofthe writing state table 700 from “1” to “0” (step S1805)
and the series of process steps according to the flowchart
come to an end. On the other hand, if the success and failure
determining unit 506 determines that the data writing process
has failed (step S1804: NO), the series of process steps
according to the flowchart come to an end.

An example will be described of a specific process proce-
dure of the data writing process at step S1803. The data
writing process at step S1803 differs depending on through
which process steps the writing process at step S1606
depicted in FIG. 16 is executed. The specific process proce-
dure of the data writing process executed employing a case of
(step S1611: NO) depicted in FIG. 16 will be described as the
example.

FIG. 19 is a flowchart of the example of the specific process
procedure of the data writing process at step S1803. In the
flowchart of FIG. 19, the writing instructing unit 509 first
writes the data Di duplicated in the writing buffer B1 into the
LBA]j of the request destination through the HDD controller
309 (step S1901).

The writing instructing unit 509 writes the parity data Pj
duplicated in the writing buffer B2 into the LBAj of the
duplication source through the HDD controller 309 (step
S1902) and thereafter, calculates the parity data Pj# whose
generation source is the data Di# to be written duplicated in
the writing buffer B3 through the HDD controller 509 (step
S1903).

The writing instructing unit 509 writes the data Di# to be
written duplicated in the writing buffer B3 into the LBAj of
the request destination through the HDD controller 309 (step
S1904) and writes the calculated parity data Pj#into the LBA]j
of the duplication source of the parity data Pj through the
HDD controller 309 (step S1905) and the procedure
progresses to step S1804.

Thereby, the writing process executed in response to the
write request can again be executed using the data Di# to be
written saved to the writing buffer B after the consistency of
the data is assured between the HDDs after their re-starting up
by writing back the data Di and the parity data Pj saved to the
writing buffer B into their original storage area.

Ifthe data writing process at step S1804 has failed, the data
Di, the parity data Pj, and the data Di# to be written saved to
the writing buffer B can be used as the pieces of read data until
a new write request is received; or such a message may be
displayed on the display 304 depicted in FIG. 3 and thereby,
may be informed of to the user as that notifying that the
writing process in response to the write request has failed
even when the HDD is re-started. The storage system 300
may be restored to the redundant configuration by re-building
the system by replacing the HDDs in which the faults occur
after the above system restoration process is executed.

US 9,081,697 B2

33

According to the storage control apparatus 101 according
to the first embodiment, the data Di stored in the LBAj of the
HDDk of the request destination and the parity data Pj whose
generation source is the data Di can be duplicated into the
writing buffer B before the writing process is executed in
response to the write request. Thereby, the data Di and the
parity data Pj before the updating can be saved to the writing
buffer B when the data Di is updated associated with the
updating of the parity data Pj.

According to the storage control apparatus 101, when the
HDD is re-started for which the writing process is executed in
response to the write request, the data Di duplicated in the
writing buffer B can be written into the LBAj of the HDDk of
the request destination; and the parity data Pj duplicated in the
writing buffer B can be written into the LBAj of the request
destination. Thereby, even when the writing into the HDD has
failed due to a fault such as thermal off-tracking, the consis-
tency of the data can be established between the HDDs by
writing back the data Di and the parity data Pj saved to the
writing buffer B into the LBAj of the original storage area
after the HDD is re-started.

According to the storage control apparatus 101, when the
writing process in response to the write request has failed and
the HDD is re-started for which the writing process is
executed, the data Di and the parity data Pj duplicated in the
writing buffer B can be written into the L.BAj of the duplica-
tion source. Thereby, after the writing process is successfully
executed in response to the write request, even when the HDD
is re-started for the reason such as a momentary power failure,
the data Di and the parity data Pj saved to the writing buffer B
can be prevented from being written back into the LBAj of
their original storage area.

According to the storage control apparatus 101: before the
writing process is executed in response to the write request,
the data Di# included in the write request can be duplicated
into the writing buffer B; and the wiring process executed in
response to the write request can again be executed using the
data Di# to be written duplicated in the writing buffer B after
the data Di and the parity data Pj duplicated in the writing
buffer B are written back into the LBAj of the duplication
source. Thereby, the writing process executed in response to
the write request can again be executed after the consistency
of'the data is assured between the HDDs after their re-starting
up by writing back the data Di and the parity data Pj into their
original storage area.

According to the storage control apparatus 101, when the
HDDk of the request destination is off line, the writing pro-
cess executed in response to the write request can again be
executed using the duplicated data Di# to be written, after the
data Di# to be written is duplicated into the writing buffer B
and the HDD is re-started due to the failure in the writing.

According to the storage control apparatus 101, when the
parity drive is off line, the writing process executed in
response to the write request can again be executed using the
duplicated data Di# to be written, after the data Di# to be
written is duplicated into the writing buffer B and the HDD is
re-started due to the failure in the writing.

According to the storage control apparatus 101, when the
write request is received in the redundant configuration, the
writing process executed in response to the write request can
again be executed using the duplicated data Di# to be written,
after the data Di# to be written is duplicated into the writing
buffer B and the HDD is re-started due to the failure in the
writing.

Based on the above, according to the storage control appa-
ratus 101 according to the first embodiment, the consistency
of the data can be assured between the HDDs when the

20

35

40

45

55

34

storage system is restored. Thereby, the data corruption of the
read data can be prevented that occurs caused by the incon-
sistency ofthe data between the HDDs due to the failure in the
writing, and the state can be avoided where the system can not
be started up or where the system malfunctions.

Though the storage control apparatus 101 includes the
control unit 503 in the above, each of the HDD1 to HDD3
may include the control unit 503. In this case, the control units
503 of the HDD1 to HDD3 control the accesses to the HDD1
to HDD3 according to, for example, the instructions of the
duplication instructing unit 504, the executing unit 505, and
the writing instructing unit 509 of the storage control appa-
ratus 101.

A storage control apparatus 101 according to a second
embodiment will be described. In the second embodiment,
the storage control apparatus 101 is applied to a RAID-5
storage system 2000. The “RAID 5” is a scheme of recording
the data items of the data group in plural HDDs distributing
the data items thereto, and recording the pieces of parity data
generated from the data group in the plural HDDs distributing
the pieces of parity data thereto.

In the RAID-S5 storage system 2000, the parity data are not
recorded in the dedicated HDD (the parity drive) as recorded
in the RAID-3 storage system but rather the parity data are
distributed and recorded in the plural HDDs. Portions iden-
tical to those described in the first embodiment will be given
the same reference numerals and will not again be depicted
and described.

FIG. 20 is a block diagram of a hardware configuration of
the storage system 2000 according to the second embodi-
ment. In FIG. 20, the storage system 2000 includes the CPU
301, the main memory 302, the display controller 303, the
display 304, the communication controller 305, the storage
control apparatus 101, and the HDD1 to HDD3. The storage
control apparatus 101 includes the processor 306, the
memory 307, the non-volatile memory 308, the HDD con-
troller 309, and the bus controller 310.

Access of the HDD1 to HDD3 is made for each strip in the
storage system 2000. A “strip” refers to a storage area that is
formed by bundling plural blocks of the hard disk. A “block”
refers to a storage area that is formed by bundling plural
sectors each formed by dividing a track that is formed by
partitioning the hard disk in a concentric manner.

InFIG. 20, the dataarea 311 of the HDD1 includes strips A,
C, and P3. The data area 312 of the HDD2 includes strips B,
P2, and E. The data area 313 of the HDD3 includes strips P1,
D, and F.

The strip A of the HDD1 stores data a0. The strip B of the
HDD2 stores data b0. The strip P1 of the HDD3 stores parity
data p1 that is formed by taking the exclusive OR of the data
a0 in the strip A and the data b0 in the strip B.

The strip C of the HDD1 stores data c0. The strip D of the
HDD3 stores data d0. The strip P2 of the HDD2 stores parity
data p2 that is formed by taking the exclusive OR of the data
¢0 in the strip C and the data d0 in the strip D.

The strip E of the HDD2 stores data e0. The strip F of the
HDD3 stores data 0. The strip P3 of the HDD1 stores parity
data p3s that is formed by taking the exclusive OR of the data
e0 in the strip E and the data {0 in the strip F.

A specific example of a writing state table 2100 according
to the second embodiment will be described. The writing state
table 2100 stores the writing state information to identify
whether the writing process is normally completed in
response to the write request, and is realized by, for example,
the non-volatile memory 308 depicted in FIG. 20.

FIG. 21 is an explanatory diagram of the specific example
of the writing state table 2100. In FIG. 21, the writing state

US 9,081,697 B2

35

table 2100 has therein fields for the writing state flag and the
strip number. The writing state information is stored as a
record by setting information in each of the fields.

The writing state flag is the flag that indicates whether the
writing process is normally completed in response to the
write request. The writing state flag represents “0” in the
initial state, is changed from “0” to “1” when the write request
is received, and is changed from “1” to “0”” when the writing
process is normally completed in response to the write
request. The strip number is the identifier of the strip of the
request destination of the write request.

A storage control process procedure of the storage control
apparatus 101 according to the second embodiment will be
described. The case will be described where the storage sys-
tem 2000 is applied to an on-line system such as that of a bank
and a user makes cash deposits and cash withdrawals using an
automated teller machine (ATM).

A case is assumed where, as a precondition, the power of
the storage system 2000 is turned on and as a result, the data
a0 in the strip A and the data b0 in the strip B are read and an
OS is normally started up. In the initial state, the state of each
of the HDD1 to HDD3 is “normal”. The storage control
process procedure of the storage control apparatus 101 in the
redundant configuration will be described.

<Storage Control Process Procedure in Redundant Con-
figuration>

FIGS. 22, 23, and 24 are flowcharts of the example of the
storage control process procedure of the storage control appa-
ratus 101 in the redundant configuration. In the flowchart of
FIG. 22, the receiving unit 501 receives a write request to
update the data b0 in the strip B to the data b1 (step S2201).
The write request includes the strip number “B” of the strip B
of'the request destination and the data b1 to be written. In this
example, the data b1 is an event log that represents that the OS
is started up.

The updating unit 502 changes the writing state flag of the
writing state table 2100 depicted in FIG. 21 from “0” to “1”
(step S2202). The updating unit 502 writes the strip number
“B” included in the received write request into the strip num-
ber field of the writing state table 2100 (step S2203).

The duplication instructing unit 504 duplicates the data b1
included in the write request into the writing buffer B3 of each
of'the HDD1 to HDD3 through the HDD controller 309 (step
S2204). Thereafter, the executing unit 505 executes the writ-
ing process in response to the received write request (step
S2205).

For example, the executing unit 505 writes the data bl
included in the write request into the strip B through the HDD
controller 309 and writes the parity data p1 (#1) formed by
taking the exclusive OR of the data b1 included in the write
request and the data a0 recorded in the strip A into the strip P1.
Inthe example, the case is assumed where the writing process
is successfully executed in response to the write request.

The updating unit 502 changes the writing state flag of the
writing state table 2100 from “1” to “0” (step S2206). There-
after, the processor 306 reads the data a0 from the strip A and
the data b1 from the strip B and starts up operation programs
(step S2207) and the procedure progresses to step S2301
depicted in FIG. 23.

In the flowchart of FIG. 23, the receiving unit 501 receives
a write request to update the data c0 in the strip C to the data
cl (step S2301). The write request includes the strip number
“C” of the strip C of the request destination and the data c1 to
be written. In this example, the data c1 is deposit data for
100,000 yen.

The updating unit 502 changes the writing state flag of the
writing state table 2100 from “0” to “1” (step S2302) and

20

25

30

35

40

45

65

36

writes the strip number “C” included in the received write
request into the strip number field of the writing state table
2100 (step S2303).

The duplication instructing unit 504 duplicates the data c1
included in the write request into the buffer B3 of each of the
HDD1 to HDD3 through the HDD controller 309 (step
S2304). Thereafter, the executing unit 505 executes the writ-
ing process in response to the received write request (step
S2305).

For example, the executing unit 505 writes the data c1
included in the write request into the strip C through the HDD
controller 309, and calculates the parity data p2 (#1) formed
by taking the exclusive OR of the data c1 included in the write
request and the data d0 recorded in the strip D and writes the
calculated parity data p2 (#1) into the strip P2 through the
HDD controller 309. In the example, the case is assumed
where the writing process is successfully executed in
response to the write request.

The updating unit 502 changes the writing state flag of the
writing state table 2100 from “1” to “0” (step S2306) and the
procedure progresses to step S2401 depicted in FIG. 24. As a
result, the deposit data for 100,000 yen is recorded in the strip
C.

In the flowchart of FIG. 24, the receiving unit 501 receives
a write request to update the data d0 in the strip D to data d1
(step S2401). The write request includes the strip number “D”
in the strip D of the request destination and the data d1 to be
written. The data d1 is withdrawal data for 5,000 yen.

The updating unit 502 changes the writing state flag of the
writing state table 2100 from “0” to “1” (step S2402) and
writes the strip number “D” included in the received write
request into the strip number field of the writing state table
2100 (step S2403).

The duplication instructing unit 504 duplicates the data d1
included in the write request into the writing buffer B3 of each
of'the HDD1 to HDD3 through the HDD controller 309 (step
S2404). Thereafter, the executing unit 505 executes the writ-
ing process in response to the received write request (step
S2405).

For example, the executing unit 505 writes the data d1
included in the write request into the strip D through the HDD
controller 309, and calculates the parity data p2 (#2) formed
by taking the exclusive OR of'the data d1 included in the write
request and the data c1 recorded in the strip C and writes the
calculated parity data p2 (#2) into the strip P2 through the
HDD controller 309.

In this example, both of the cases are assumed where the
writing process is successfully executed in response to the
write request and where the writing process in response to the
write request has failed. The case as an exemplary failure is
assumed where the supply of the power of the storage system
2000 is suspended due to a momentary power failure during
the writing of the data d1 included in the write request into the
strip D and a portion of the data d1 can not be written into the
strip D.

In this case, the data stored in the strip D is data dx that is
different from both of the data d0 and the datad1. On the other
hand when the writing of the parity data into the strip P2 is
successfully executed, the parity data p2 (#2) stored in the
strip P2 is the data calculated using the data d1. Therefore, at
this moment, inconsistency of the data occurs between the
strips D and P2. When the supply of the power of the storage
system 2000 is suspended due to a momentary power failure,
the CPU 301 again turns on the power of the storage system
2000 and thereby, the HDD1 to HDD3 are re-started.

Returning to the description of the flowchart with reference
to FIG. 24, the determining unit 508 thereafter determines

US 9,081,697 B2

37
whether the HDD is re-started (step S2406). If the determin-
ing unit 508 determines that the HDD is re-started (step
S2406: YES), the writing instructing unit 509 writes the data
d1 duplicated in the writing buffer B3 into the strip D through
the HDD controller 309 (step S2407).

The writing instructing unit 509 calculates the parity data
p2 (#2) and writes the calculated parity data p2 (#2) into the
strip P2 through the HDD controller 309 (step S2408). The
parity data p2 (#2) is calculated from the data d1 duplicated in
the writing buffer B3 and the data c1 stored in the strip C. The
updating unit 502 changes the writing state flag of the writing
state table 2100 from “1” to “0” (step S2409) and the series of
process steps according to the flowchart come to an end.

On the other hand, if the determining unit 508 determines
at step S2406 that the HDD is not re-started (step S2406: NO),
the updating unit 502 changes the writing state flag of the
writing state table 2100 from “1” to “0” (step S2409) and the
series of process steps according to the flowchart come to an
end.

As described, the writing process executed in response to
the write request can again be executed using the data d1
duplicated in the writing buffer B3 after the power is turned
on even when the supply of the power is suspended due to a
momentary power failure, etc., during the writing process
executed in response to the write request. As a result of
executing again the writing process, the withdrawal data for
5,000 yen is recorded in the strip D. Therefore, when an
inquiry on the account balance is made thereafter, the data on
the account balance of 95,000 yen can be referred to from the
data c1 in the strip C and the data d1 in the strip D.

<Storage Control Process Procedure in Non-Redundant
Configuration>

A storage control process procedure of the storage control
apparatus 101 in the non-redundant configuration will be
described. The description will be made taking an example of
the case where a fault occurs at the HDD1 and the HDD1 is
not accessible. An example will be described of updating the
management data 410 to 430 respectively stored in the system
areas 314 to 316 of the HDD1 to HDD3.

FIG. 25 is an explanatory diagram (Part II) of the example
of the updating of the management data 410 to 430. In FIG.
25, the example is depicted of the updating of the manage-
ment data 410 to 430 of the HDD1 to HDD3 executed when
the fault occurs at the HDD1. An upper portion of FIG. 25
depicts the management data 410 to 430 maintained when the
HDD1 to HDD3 are in their normal conditions and an lower
portion thereof depicts the management data 410 to 430
maintained after the fault occurs at the HDD1.

For example, the state of the HDD1 of the management
data 410 is already updated from “normal” to “(abnormal)”.
The state “(abnormal)” represents that the state of the HDD1
in the management data 410 becomes “abnormal” when the
HDD controller 309 can update the management data 410.
The state of the HDD1 of the management data 420 is already
updated from “normal” to “abnormal”. The state of the HDD1
of the management data 430 is already updated from “nor-
mal” to “abnormal”.

FIGS. 26 and 27 are flowcharts of an example of the storage
control process procedure of the storage control apparatus
101 in the non-redundant configuration (whose HDD1 is
abnormal). In the flowchart of FIG. 26, the receiving unit 501
receives a write request to update the data c1 in the strip C to
data c2 (step S2601). The writing request includes the strip
number “C” of the strip C of the request destination and the
data c2 to be written. The data c2 is deposit data for 500,000
yen.

20

35

40

45

38

The updating unit 502 changes the writing state flag of the
writing state table 2100 from “0” to “1” (step S2602) and
writes the strip number “C” included in the received write
request into the strip number field of the writing state table
2100 that corresponds to the writing state flag changed to “1”
(step S2603).

The duplication instructing unit 504 duplicates the data c2
included in the write request into the writing buffer B3 of each
of'the HDD1 to HDD3 through the HDD controller 309 (step
S2604). However, when the writing buffer B3 of the HDD1 is
not accessible, the duplication of the data c2 into the writing
buffer B3 of the HDD1 is not executed. Thereafter, the execut-
ing unit 505 executes the writing process in response to the
received write request (step S2605).

For example, the executing unit 505: reads the data d1 from
the strip D through the HDD controller 309; calculates the
parity data p2 (#3) by taking the exclusive OR of the data d1
and the data c2 included in the write request; and writes the
calculated parity data p2 (#3) into the strip P2. The case will
be assumed where the writing process is successfully
executed in response to the write request.

The updating unit 502 changes the writing state flag of the
writing state table 2100 from “1” to “0” (step S2606) and the
procedure progresses to step S2701 depicted in FIG. 27. As a
result, the parity data p2 (#3) on which the deposit data for
500,000 yen is reflected is written into the strip P2.

In the flowchart of FIG. 27, the receiving unit 501 first
receives a write request to update the data d1 in the strip D to
the data d2 (step S2701). The write request includes the strip
number “D” of the strip D of the request destination and the
data d2 to be written. The data d2 is withdrawal data for
100,000 yen.

The updating unit 502 changes the writing state flag of the
writing state table 2100 from “0” to “1” (step S2702) and
writes the strip number “D” included in the received write
request into the strip number field of the writing state table
2100 (step S2703).

The duplication instructing unit 504 duplicates the data d1
stored in the strip D of the request destination of the write
request into the writing buffer B1 of each of the HDD1 to
HDD3 through the HDD controller 309 (step S2704). How-
ever, when the writing buffer B1 of the HDD1 is not acces-
sible, the duplication of the data d1 into the writing buffer B1
of the HDD1 is not executed.

The duplication instructing unit 504 duplicates the parity
data p2 (#3) recorded in the strip P2 whose generation source
is the data d1 in the strip D into the writing buffer B2 of each
of'the HDD1 to HDD3 through the HDD controller 309 (step
S2705). However, when the writing buffer B2 of the HDD1 is
not accessible, the duplication of the parity data p2 (#3) into
the writing buffer B2 of the HDD1 is not executed.

The duplication instructing unit 504 duplicates the data d2
included in the write request into the writing buffer B3 of each
of'the HDD1 to HDD3 (step S2706). Similarly to the above,
when the writing buffer B3 of the HDD1 is not accessible, the
duplication of the data d2 into the writing buffer B3 of the
HDD1 is not executed. Thereafter, the executing unit 505
executes the writing process in response to the received write
request (step S2707).

For example, the executing unit 505: restores the data c2 in
the strip C by taking the exclusive OR of the parity data p2
(#3) recorded in the strip P2 and the data d1 stored in the strip
D; writes the data d2 included in the write request into the
strip D through the HDD controller 309; and calculates parity
datap2 (#4) by taking the exclusive OR of the restored data c2

US 9,081,697 B2

39

and the data d2 included in the write request and writes the
calculated parity data p2 (#4) into the strip P2 through the
HDD controller 309.

Returning to the description with reference to the flowchart
of FIG. 27, the success and failure determining unit 506
determines whether the writing process is successfully
executed in response to the write request (step S2708). If the
success and failure determining unit 506 determines that the
writing process is successfully executed in response to the
write request (step S2708: YES), the updating unit 502
changes the writing state flag of the writing state table 2100
from “1” to “0” (step S2709) and the series of process steps
according to the flowchart come to an end.

As a result, withdrawal data for 10,000 yen is recorded in
the strip D. Therefore, when an inquiry on the account bal-
ance is made thereafter, the data on the account balance of
495,000 yen can be restored from the data d2 in the strip D and
the parity data p2 (#3) in the strip P2, and referred to.

On the other hand, if the success and failure determining
unit 506 determines that the writing process in response to the
write request has failed (step S2708: NO), the detecting unit
507 detects the HDD for which the writing has failed as the
HDD at which a fault occurs (step S2710) and changes the
state of the HDD in which the fault occurs in the management
data of the HDD that is on line from “normal” to “abnormal”
through the HDD controller 309 (step S2711).

The detecting unit 507 causes the HDD in which the fault
occurs at to be off line through the HDD controller 309 (step
S2712). The determining unit 508 determines whether the
number x of HDDs in which the faults occur is “x=2". In the
example of F1G. 27, the determining unit 508 determines that
the number x of HDDs is greater than or equal to two (step
S2713). The determining unit 508 notifies the CPU 301 that
the number of HDDs in which the faults occur is greater than
or equal to two and thereby, the storage system 2000 changes
to the system down state (step S2714).

An example of updating of the management data 410 to
430 stored in the system areas 314 to 316 of the HDD1 to
HDD3 will be described. The description will be made taking
an example of the case where, at step S2707 depicted in FIG.
27, a fault occurs at the HDD2 and the writing of the parity
datap2 (#4) into the strip P2 has failed. For example, a portion
of the parity data p2 (#4) can not be written into the strip P2
of'the HDD2 and therefore, the storage content of the strip P2
is parity data p2x that is different from the parity data p2 (#4).
In this case, the HDD2 is detected as an HDD in which the
fault occurs and is caused to be off line.

FIG. 28 is an explanatory diagram (Part III) of the example
of the updating of the management data 410 to 430. FIG. 28
depicts the example of updating of the management data 410
to 430 of the HDD1 to HDD3 executed when the fault occurs
at the HDD2. An upper portion of the FIG. 28 depicts the
management data 410 to 430 maintained before the fault
occurs at the HDD2 and a lower portion thereof depicts the
management data 410 to 430 maintained after the fault occurs
at the HDD2.

For example, the state of the HDD2 of the management
data 420 is already updated from “normal” to “(abnormal)”.
The state “(abnormal)” represents that the state of the HDD2
in the management data 420 becomes “abnormal” when the
HDD controller 309 can update the management data 420.
The state of the HDD2 of the management data 430 is already
updated from “normal” to “abnormal”. On the other hand the
state of the HDD?2 of the management data 410 remains to be
“normal” in the HDD1 that is already disconnected.

10

15

20

25

30

35

40

45

50

55

60

65

40

<System Restoration Process Procedure>

A system restoration process procedure of the storage con-
trol apparatus 101 will be described. The description will be
made taking an example of the case where the storage system
2000 in the system down state is restored into the non-redun-
dant configuration. A case is assumed where, as a precondi-
tion, the hardware of the storage system 2000 is reset and
thereafter, the HDD2 that is caused last to be off line is caused
to be on line and is re-started. In this case, the state of the
HDD2 of each of the management data 420 and 430 of the
HDD2 and HDD3 is changed from “abnormal” to “normal”.
The state of the HDD2 of the management data 410 of the
HDD1 remains to be “normal”.

FIG. 29 is a flowchart of an example of the system resto-
ration process procedure of the storage control apparatus 101.
In the flowchart of FIG. 29, the determining unit 508 first
determines whether the HDD is re-started that is HDD2 in this
case and for which the writing process is executed in response
to the write request (step S2901).

The determining unit 508 waits for the HDD2 to be re-
started (step S2901: NO). When the determining unit 508
determines that the HDD2 is re-started (step S2901: YES), the
writing instructing unit 509 determines whether the writing
state flag of the writing state table 2100 represents “1” (step
S2902). If the writing instructing unit 509 determines that the
writing state flag represents “0” (step S2902: NO), the series
of process steps according to the flowchart come to an end.

On the other hand, if the writing instructing unit 509 deter-
mines that the writing state flag represents “1” (step S2902:
YES), the writing instruction unit 509 writes the data d1
duplicated in the writing buffer B1 into the strip D of the
HDD3 through the HDD controller 309 (step S2903) and
writes the parity data p2 (#3) duplicated in the writing buffer
B2 into the strip P2 of the re-started HDD2 through the HDD
controller 309 (step S2904).

Thereafter, the writing instructing unit 509 writes the data
d2 duplicated in the writing buffer B3 into the strip D through
the HDD controller 309 (step S2905), and calculates the
parity data p2 (#4) whose generation source is the data d2 and
writes the calculated parity data p2 (#4) into the strip P2
through the HDD controller 309 (step S2906).

The success and failure determining unit 506 determines
whether the data writing processes at steps S2903 to S2906
are successfully executed (step S2907). When the success and
failure determining unit 506 determines that the data writing
processes are successfully executed (step S2907: YES), the
updating unit 502 changes the writing state flag of the writing
state table 2100 to “0” (step S2908) and the series of process
steps according to the flowchart come to an end.

As aresult, the withdrawal data for 10,000 yen is recorded
in the strip D. Therefore, when an inquiry on the account
balance is made thereafter, the data on the account balance of
495,000 yen can be referred to from the data d2 in the strip D
and the parity data p2 (#4) in the strip P2.

On the other hand, if the success and failure determining
unit 506 determines at step S2907 that any one of the data
writing processes has failed (step S2907: NO), the series of
process steps according to the flowchart come to an end. In
this case, the data d1, the parity data p2 (#3), and the data d2
duplicated in the writing buffers B1 to B3 can be used as the
pieces of read data. For example, when a read request for the
strip C is received, the data c2 in the strip C can be restored
from the data d1 duplicated in the writing buffer B1 and the
parity data p2 (#3) duplicated in the writing buffer B2.

According to the storage control apparatus 101 according
to the second embodiment, the data and the parity data before
the updating can be saved to the writing buffers B1 and B2;

US 9,081,697 B2

41

the consistency of the data can be established between the
HDDs by writing back the data and the parity data saved to the
writing buffers B1 and B2 into the original storage area strips
after the re-starting up of the HDD due to the failure in the
writing; and the writing process executed in response to the
write request can again be executed using the data saved to the
writing buffer B3 after writing back the data and the parity
data saved to the writing buffers B1 and B2 into the original
storage area strips.

The storage control method described in the present
embodiment may be implemented by executing a prepared
program on a computer such as a personal computer and a
workstation. The program is stored on a computer-readable
recording medium such as a hard disk, a flexible disk, a
CD-ROM, an MO, and a DVD, read out from the computer-
readable medium, and executed by the computer. The pro-
gram may be distributed through a network such as the Inter-
net.

The storage control apparatus described in the present
embodiment can be realized by an application specific inte-
grated circuit (ASIC) such as a standard cell or a structured
ASIC, or a programmable logic device (PLD) such as a field-
programmable gate array (FPGA). Specifically, for example,
functional units are defined in hardware description language
(HDL), which is logically synthesized and applied to the
ASIC, the PLD, etc., thereby enabling manufacture of the
storage control apparatus 101.

According to the storage control apparatus and the storage
control method, an effect is achieved that consistency of data
can be assured among the storage apparatuses.

All examples and conditional language provided herein are
intended for pedagogical purposes of aiding the reader in
understanding the invention and the concepts contributed by
the inventor to further the art, and are not to be construed as
limitations to such specifically recited examples and condi-
tions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although one or more embodiments
of the present invention have been described in detail, it
should be understood that the various changes, substitutions,
and alterations could be made hereto without departing from
the spirit and scope of the invention.

What is claimed is:
1. A storage control apparatus comprising a processor con-
figured to:

receive a write request for any one among storage appara-
tuses in a system storing for each data group, data items
of the data group and correction codes generated from
the data group, the data items and correction codes being
stored in different storage apparatuses;

duplicate to a specific storage area and upon receiving the
write request, data stored in a storage area of the storage
apparatus for which the request is received and the cor-
rection code whose generation source is the data;

determine, after duplicating the data and the correction
code into the specific storage area, whether the storage
apparatus for which a writing process is executed in
response to the write request has been re-started; and

write, upon determining that the storage apparatus is re-
started, the data duplicated in the specific storage area
into a storage area of the storage apparatus for which the
request is received and write the correction code dupli-
cated in the specific storage area into a storage area of the
storage apparatus from which the correction code is
duplicated.

10

15

20

25

30

35

40

45

50

55

60

65

42

2. The storage control apparatus according to claim 1, the
processor configured to
determine whether the writing process is successfully
executed, based on a processing result of the writing
process executed in response to the write request,
wherein
upon determining that the writing process has failed and
that the storage apparatus is re-started, the processor
writes the data duplicated in the specific storage area
into a storage area of the storage apparatus for which the
request is received and writes the correction code dupli-
cated in the specific storage area into a storage area of the
storage apparatus from which the correction code is
duplicated.
3. The storage control apparatus according to claim 2,
wherein
the processor further duplicates into the specific storage
area, given data that is indicated in the write request to be
written, and
the processor writes the data duplicated in the specific
storage area into the storage area of the storage appara-
tus for which the request is received, writes the correc-
tion code duplicated in the specific storage area into the
storage area of the storage apparatus from which the
correction code is duplicated, thereafter, writes the given
data duplicated in the specific storage area into the stor-
age area of the storage apparatus for which the request is
received, and writes given correction code whose gen-
eration source is the given data, into the storage area of
the storage apparatus from which the given correction
code is duplicated.
4. The storage control apparatus according to claim 3, the
processor configured to
detects a storage apparatus in the system and at which a
fault occurs, wherein
the processor duplicates the given data into the specific
storage area, when the storage apparatus for which the
write request is received is the detected storage appara-
tus,
the processor, after duplicating the given data into the
specific storage area, determines whether the storage
apparatus for which the writing process is executed in
response to the write request is re-started, and
the processor, upon determining that the storage apparatus
is re-started, calculates a correction code whose genera-
tion source is the given data duplicated in the specific
storage area and writes the calculated correction code
into a storage area of the storage apparatus to which the
correction code, whose generation source is the data
stored in the storage area of the storage apparatus for
which the request is received, is stored.
5. The storage control apparatus according to claim 4,
wherein
the processor duplicates the given data into the specific
storage area, when the storage apparatus to which the
correction code, whose generation source is the data
stored in the specific storage area, is stored is the
detected storage apparatus,
the processor, after duplicating the given data into the
specific storage area, determines whether the storage
apparatus for which the writing process is executed in
response to the write request is re-started, and
the processor, upon determining that the storage apparatus
is re-started, writes the given data duplicated in the spe-
cific storage area into the storage area of the storage
apparatus for which the request is received.

US 9,081,697 B2

43

6. The storage control apparatus according to claim 5,
wherein
when detected storage apparatuses are fewer in number
than storage apparatuses storing the correction code, the
processor duplicates the given data into the specific stor-
age area,
the processor, after duplicating the given data into the
specific storage area, determines whether the storage
apparatus for which the writing process is executed in
response to the write request is re-started, and
the processor, upon determining that the storage apparatus
is re-started, writes the given data duplicated in the spe-
cific storage area into the storage area of the storage
apparatus for which the request is received, calculates
the correction code whose generation source is the given
data, and writes the calculated correction code into the
storage area storing the correction code whose genera-
tion source is the data stored in the storage area of the
storage apparatus for which the request is received.
7. The storage control apparatus according to claim 1,
wherein
the specific storage area is a non-volatile storage area that
is different from the storage area of the storage apparatus
in which the data items of the data groups and the cor-
rection code generated from each of the data groups are
stored.
8. The storage control apparatus according to claim 7,
wherein
the specific storage area is disposed in each of the storage
apparatuses in the system.
9. A storage control method executed by a computer, the
storage control method comprising:
receiving a write request for any one among storage appa-
ratuses in a system storing for each data group, data
items of the data group and correction codes generated
from the data group, the data items and correction codes
being stored in different storage apparatuses;
duplicating to a specific storage area and upon receiving
the write request, data stored in a storage area of the

10

25

30

35

44

storage apparatus for which the request is received and
the correction code whose generation source is the data;

determining, after duplicating the data and the correction
code into the specific storage area, whether the storage
apparatus for which a writing process is executed in
response to the write request has been re-started; and

writing, upon determining that the storage apparatus is
re-started, the data duplicated in the specific storage area
into a storage area of the storage apparatus for which the
request is received and write the correction code dupli-
cated in the specific storage area into a storage area of the
storage apparatus from which the correction code is
duplicated.

10. A storage control method executed by a computer, the

storage control method comprising:

receiving a write request for any one among storage appa-
ratuses in a system storing for each data group, data
items of the data group and correction codes generated
from the data group, the data items and correction codes
being stored in different storage apparatuses;

instructing a control unit that accesses a storage apparatus
in the system, to duplicate to a specific storage area, data
stored in a storage area of the storage apparatus for
which the request is received and the correction code
whose generation source is the data, the computer
instructing the control unit upon receiving the write
request;

determining, after duplication of the data and the correc-
tion code into the specific storage area, whether the
storage apparatus for which a writing process is
executed in response to the write request has been re-
started; and

instructing upon determining that the storage apparatus is
re-started, the control unit to write the data duplicated in
the specific storage area into a storage area of the storage
apparatus for which the request is received and to write
the correction code duplicated in the specific storage
area into a storage area of the storage apparatus from
which the correction code is duplicated.

#* #* #* #* #*

